|
|
Cloning and Expression Analysis of Prophenoloxidase (PPO2) Gene of the Gomphocerus sibiricus |
ADILA A-Ji, LIAO Jie-Jie, MA Ai-Xia, WEI Xiao-Jia, YE Xiao-Fang, JI Rong, HU Hong-Xia* |
Key Laboratory of Special Environment Biodiversity Application and Regulation in Xinjiang/International Center for the Collaborative Management of Cross-border Pest in Central Asia/College of Life Sciences, Xinjiang Normal University, Urumqi 830054, China |
|
|
Abstract Phenoloxidases (POs) are important immune effector molecules of insect and belong to the type 3 copper protein familywith oxidoreductase activities. Generally, PO is present as a zymogen, prophenoloxidase (PPO), which is activated by a serine protease cascade upon recognition of foreign invaders, and then catalyzes both melanin biosynthesis and the oxidation of phenols to quinones. Gomphocerus sibiricus is dominant pest in alpine and subalpine grassland areas in Xinjiang. The study of immune related gene of G. sibiricus can lay a foundation for the future study of its interaction with pathogenic organisms to carry out biological control. The full length cDNA of PPO2 were cloned by RACE technology in this study, and which consisted of 2 439 bp (GenBank No. KY981766). Bioinformatic analysis indicated that PPO2 is highly similar to Locusta migratoria and Diabolocatantops pinguis. It contained 2 common copper-binding regions, 2 potential proteolytic activation sites, a plausible thiolester site, and a conserved C-terminal region. Genetic expression analysis showed that the gene expression level was the highest inhindgut of G. sibiricus. The expression level in posterior intestine was significantly higher than midgut, and there were no difference between salivary glands and malpighian tubules, the expression was least in fat body. This study could provide a theoretical basis for further study of the function of PPO2 gene in G. sibiricus.
|
Received: 11 March 2021
|
|
Corresponding Authors:
* huhongxia111@126.com
|
|
|
|
[1] 黄琼,胡杰,王勤. 2013. 两种色型黄粉虫酚氧化酶原的cDNA克隆、生物信息学分析及表达水平检测[J].昆虫学报, 56(06): 594-604. (Huang Q, Hu J, Wang Q. 2013. Cloning, bioinformatic analysis and expression profiling of the prophenoloxidase cDNA from two color varieties of Tenebrio molitor, 56(06): 594-604.) [2] 刘宁, 贾慧, 申珅, 等. 2020. 真菌漆酶: 多样的生物学功能及复杂的天然底物[J]. 农业生物技术学报, 28(2): 333-341. (Liu N, Jia H, Sheng K, et al. 2020. Fungal laccase: multi-biofunction and complicated natural substrates[J]. Journal of Agricultural Biotechnology, 28(2): 333-341.) [3] 乔璋, 乌麻尔别克, 熊玲, 等. 1996. 西伯利亚蝗对草原的危害及其防治指标的研究[J]. 草地学报,4(01): 39-48. (Qiao Z, Wu M E B K, Xiong L, et al. 1996. Research on forage1oss caused by the Gomphocerus sibiricus, 4(01): 39-48.) [4] 时超美. 2000. 昆虫酚氧化酶原活化及其在免疫中的作用[J].昆虫知识, 37(05): 310-314. (Shi C M, 2000. Activation and effect in immune response of insect prophenoloxidase[J]. Entomological Knowledge, 37(05): 310-314.) [5] 涂雄兵, 杜桂林, 张泽华. 2021. 我国蝗虫绿色防控技术体系集成与应用[J]. 植物保户学报, 48(01):1-4. (Tu Xiongbing, Du G L, Zhang Z H. 2021. Integration and application of sustainable management system against to locust & grasshopper in China[J]. Journal of Plant Protection, 48(01): 1-4. [6] 闫蒙云,何立志,王晗, 等. 2018. 西伯利亚蝗越冬卵的发育特征及胚胎发育规律[J].草业科学, 35(08): 1985-1993. (Yan M Y, He L Z, Wang H, et al. 2018. Development alcharacteristics of overwintering eggs and embryos of Gomphocerus sibiricus[J]. Pratacultural Science, 53(01): 43-50.) [7] 张永亮, 朱勇. 2009. 家蚕和野桑蚕酚氧化酶原基因的组织表达差异比较[J].蚕业科学, 35(03): 630-633. (Zhang Y L, Zhu Y, 2009. A comparison on tissue-specific expressions of prophenoloxidase gene in Bombyx mori and Bombyx mandarina[J]. Acta Sericologica Sinica, 35(03): 630-633.) [8] 郑江华, 吴秀兰, 穆晨, 等. 2016. 基于MaxEnt模型的西伯利亚蝗虫在新疆潜在分布预测研究[J]. 新疆农业科学, 53(01): 43-50. (Wu J H, Wu X L, Mu C, et al. 2016. Prediction of potential distribution area of Gomphocerus sibiric in China based on the MaxEnt model[J]. Xinjiang Agricultural Sciences, 53(01): 43-50.) [9] Arakane Y, Muthukrishnan S, Beeman R W, et al.2005. Laccase 2 is the phenoloxidase gene required for beetle cuticle tanning[J]. Proceedings of the National Academy of Sciences of the USA, 102(32): 11337-11342. [10] Arockiaraj J, Gnanam A J, Pothikasalam G, et al.2013. A novel prophenoloxidase, hemocyanin encoded copper containing active enzyme from prawn: Gene characterization[J]. Gene. 524(2): 139-151. [11] Burmester T.2002. Origin and evolution of arthropod hemocyanins and related proteins[J]. Journal of comparative physiology B-biochemical systems and environmental physiology, 172(2): 95-107. [12] Cerenius L, Söderhäll K.2004. The prophenoloxidase-activating system in invertebrates[J]. Immunological reviews, 198: 116-126. [13] Cooper D, Wuebbolt C, Heryanto C, et al.2019. The prophenoloxidase system in Drosophila participates in the anti-nematode immune response[J]. Molecular Immunology. 109: 88-98. [14] Decker H, Schweikardt T, Tuczek F.2006. The first crystal structure of tyrosinase: All questions answered?[J]. Angewandte Chemie (International ed. in English), 45(28): 4546-4550. [15] Dudzic J P, Kondo S, Ueda R, et al.2015. Drosophila innate immunity: Regional and functional specialization of prophenoloxidases[J]. BMC Biology, 13: 81. [16] Fujimoto K, Okino N, Kawabata S, et al.1995. Nucleotide sequence of the cDNA encoding the proenzyme of phenol oxidase A1 of Drosophila melanogaster[J]. Proceedings of the National Academy of Sciences of the USA, 92(17): 7769-7773. [17] Hagner-Holler S, Schoen A, Erker W, et al.2004. A respiratory hemocyanin from an insect[J]. Proceedings of the National Academy of Sciences of the USA, 101(3): 871-874. [18] Huang A, Lu M, Ling E, et al.2020. A M35 family metalloprotease is required for fungal virulence against insects by inactivating host prophenoloxidases and beyond[J]. Virulence, 11(1): 222-237. [19] Ito S, Sugumaran M, Wakamatsu K.2020. Chemical reactivities of ortho-quinones produced in living organisms: fate of quinonoid products formed by tyrosinase and phenoloxidase action on phenols and catechols[J]. International Journal of Molecular Sciences, 21(17): 6080. [20] Kawabata T, Yasuhara Y, Ochiai M, et al.1995. Molecular cloning of insect pro-phenol oxidase: A copper-containing protein homologous to arthropod hemocyanin[J]. Proceedings of the National Academy of Sciences of the USA, 92(17): 7774-7778. [21] Kim M S, Baek M J, Lee M H, et al.2002. A new easter-type serine protease cleaves a masquerade-like protein during prophenoloxidase activation in Holotrichia diomphalia larvae[J]. The Journal of Biological Chemistry, 277(42): 39999-40004. [22] Jiang H, Wang Y, Ma C, et al.1997. Subunit composition of pro-phenol oxidase from Manduca sexta: Molecular cloning of subunit ProPO-P1[J]. Insect Biochemistry and Molecular Biology, 27(10): 835-850. [23] Jin M H, Zhao X L, Li G Y, et al.2016. Molecular characterization and bioinformatics analysis of a prophenoloxidase-1 (PPO1) in Plutella xylostella[J]. International Journal of Insect Science, 8: 1-8. [24] Lee S Y, Kwon T H, Hyun J H, et al.1998. In vitro activation of pro-phenol-oxidase by two kinds of pro-phenol-oxidase-activating factors isolated from hemolymph of coleopteran, Holotrichia diomphalia larvae[J]. European Journal of Biochemistry, 254(1): 50-57. [25] Li B, Li H, Tian Y, et al.2021. Molecular identification and immunity functional characterization of lmserpin1 in locusta migratoria manilensis e[J]. Insects, 12(2): 178. [26] Li J S, Ruyl Kim S, Christensen B M, et al.2005. Purification and primary structural characterization of prophenoloxidases from Aedes aegypti larvae[J]. Insect Biochemistry and Molecular Biology, 35(11): 1269-1283. [27] Li Y, Wang Y, Jiang H, et al.2009. Crystal structure of Manduca sexta prophenoloxidase provides insights into the mechanism of type 3 copper enzymes[J]. Proceedings of the National Academy of Sciences of the USA, 106(40): 17002-17006. [28] Livak K J, Schmittgen T D.2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-Δ Δ CT Method[J]. Methods, 25(4): 402-408. [29] Lourenço A P, Zufelato M S, Bitondi M M, et al.2005. Molecular characterization of a cDNA encoding prophenoloxidase and its expression in Apis mellifera[J]. Insect biochemistry and molecular biology, 35(6): 541-552. [30] Ma L, Chen F, Wang W, et al.2020. Identification of two clip domain serine proteases involved in the pea aphid's defense against bacterial and fungal infection[J]. Insect Science, 27(4): 735-744. [31] Müller H M, Dimopoulos G, Blass C, et al.1999. A hemocyte-like cell line established from the malaria vector Anopheles gambiae expresses six prophenoloxidase genes[J].The Journal of Biological Chemistry, 274(17): 11727-11735. [32] Wang Q, Yin M, Yuan C, et al.2020. Identification of a conserved prophenoloxidase activation pathway in cotton bollworm Helicoverpa armigera[J]. Frontiers in immunology, 11: 785. [33] Zhang S, Hong F, Song H, et al.2016. Cloning, Expression, and characterization of prophenoloxidases from Asian corn borer, Ostrinia furnacalis (Gunée)[J]. Journal of Immunology Research, 2016: 1781803. [34] Zheng H, Li L, Xu Q, et al.2013. Gene cloning and expression patterns of two prophenoloxidases from Catantops pinguis (Orthoptera: Catantopidae)[J]. Bulletin of Entomological Research, 103(4): 393-405. |
|
|
|