|
|
Study on Enhancement and Releasing Effect of Triangular Bream (Megalobrama terminalis) in the Middle and Lower Reaches of the Qiantang River by Microsatellite Paternity Testing |
ZHANG Min-Ying1, WANG Xing-Yan2, ZHANG Wan-Ping3, TONG Qi-Lie3, FANG Di-An1, ZHOU Yan-Feng1, XU Dong-Po1,* |
1 Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Ministry of Agriculture and Rural Affaris / Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; 2 College of Fisheries, Nanjing Agricultural University, Wuxi 214081, China; 3 Hangzhou City Supervision and Management Chief Station of Fishery Administration, Fishing Port and Fishing Boat, Hangzhou 310008, China |
|
|
Abstract As growing quickly, big body size and delicious, triangular bream (Megalobrama terminalis) is an important economic fish, which is suggested to breed in open water in China. It is also an important catch species in Qiantang River Basin. However, M. terminalis resources have reduced recently, due to overfishing, environmental damage, water pollution, construction of water conservancy and transportation and so on. Restocking enhancement is considered as an effective method to recover the wild resources. However, there was rarely report on the effect of restocking enhancement of M. terminalis. In order to analyze the effect of restocking enhancement of M. terminalis, 12 pairs of microsatellites primers with good amplification effect were selected from 31 pairs of microsatellite primers in this study. Based on the microsatellite marker paternity test technique, genetic typing and polymorphism analysis were carried out on 301 parents from 4 breeding farms and 371 recaptured offspring individuals. The results showed that the number of alleles of microsatellite marker ranged from 15 to 68, and the expected heterozygosity was 0.726~0.969 (mean 0.863). The range of polymorphism information content was 0.693~0.967 (mean 0.849) and all 12 loci were high polymorphic (PIC>0.5). Among them, the frequency of invalid alleles of 4 microsatellite loci was greater than 0.2, which would affect the paternity analysis by software, so the data of the 4 loci were not used in following analysis. The parentage assignment for the situation of unknown sexes showed the combined non-exclusion probability of 8 loci was 99.997 5%, according to Cervus 3.0. The results showed that there were 4 recaptured individuals from offspring of brood stocks. The study suggested that the contribution of the released populations to nature resources of M. terminalis was 1.08% in 2018. This study discussed the enhancement and releasing effect of M. terminalis, which has great significance in protecting the resources and guiding the scientific breeding and releasing of M. terminalis in the Qiantang river in the future.
|
Received: 20 December 2019
|
|
Corresponding Authors:
* xudp@ffrc.cn
|
|
|
|
[1] 陈杰, 李福贵, 黄创新, 等. 2014. 不同鳊鲂属鱼类群体的形态差异分析[J]. 上海海洋大学学报, 23(03): 388-394. (Chen J, Li F G, Huang C X, et al.2014. Morphological variations of genera Parabramis and Megalobrama teleost populations[J]. Journal of Shanghai Ocean University, 23(03): 388-394.) [2] 陈马康, 童合一, 俞泰济, 等. 1990. 钱塘江鱼类资源[M]. 上海: 上海科学技术文献出版社, pp. 1-267. (Cheng M K, Tong H Y, Yu T J.1990. Qiantang River Fish Resources[M]. Shanghai Science and Technology Literature Publishing House, Shanghai, China, pp. 1-267.) [3] 陈宜瑜. 1998. 中国动物志:硬骨鱼纲鲤形目(中卷)[M]. 北京: 科学出版社, pp. 200-208. (Chen Y Y.1998. Chinese Animal Records: The Bonefish of the Bonefish (Middle Volume)[M]. Science Press, Beijing, China, pp. 200-208.) [4] 成庆泰, 郑葆珊. 1987. 中国鱼类系统检索[M]. 北京: 科学出版社, pp. 135-136. (Cheng Q T, Zheng B S.1987. China Fish System Search[M]. Science Press, Beijing, China, pp. 135-136.) [5] 成为为, 汪登强, 危起伟, 等. 2014. 基于微卫星标记对钱塘江中上游胭脂鱼增殖放流效果的评估[J]. 中国水产科学, 21(03): 574-580. (Cheng W W, Wang D Q, Wei Q W, et al.2014. Effect of restocking enhancement of Chinese sucker in the middle and upper reaches of Yangtze River based on microsatellite loci[J]. Journal of Fishery Sciences of China, 21(03): 574-580.) [6] 董世瑞, 孔杰, 张天时, 等. 2008. 中国对虾微卫星家系鉴定的模拟分析与应用[J]. 水生生物学报, 32(1): 96-101. (Dong S R, Kong J, Zhang T S, et al.2008. Microsatellite markers simulation and application for parentage determination on Fenneropenaeus chinensis[J]. Acta Hydrobiologica Sinica, 32(1): 96-101.) [7] 郝雅宾, 刘金殿, 张爱菊, 等. 2017. 钱塘江下游江段鱼类资源现状[J]. 浙江农业学报, 29(10): 1620-1629. (Hao Y B, Liu J D, Zhang A J, et al.2017. Current status of fishery resources in downstream section of Qiantang River[J]. Acta Agriculturae Zhejiangensis, 29(10): 1620-1629.) [8] 赖瑞芳, 张秀杰, 李艳和, 等. 2014. 鲂属鱼类线粒体基因组的比较及其系统发育分析[J]. 水产学报, 38(01): 15-22. (Lai R F, Zhang X J, Li Y H, et al.2014. Comparison of mitochondrial genomes of the genus Megalobrama and their phylogenetic analysis[J]. Journal of Fisheries of China, 38(01): 15-22.) [9] 李树华, 陈大庆, 段辛斌, 等. 2014. 基于线粒体DNA标记的钱塘江中游草鱼亲本增殖放流的遗传效果评估[J]. 淡水渔业, 44(03): 45-50. (Li S H, Chen D Q, Duan X B, et al.2014. Genetic effects of released mature Ctenopharyngodon idellus on natural populations based on the mitochondrial DNA markers in the middle reaches of the Yangtze River[J]. Freshwater Fisheries, 44(03): 45-50.) [10] 李思发, 朱泽闻, 邹曙明, 等. 2002. 鲂属团头鲂、三角鲂及广东鲂种间遗传关系及种内遗传差异[J]. 动物学报, 48(3): 339-345. (Li S F, Zhu Z W, Zou S M, et al.2002. Interspecific phylogenesis and intraspecific genetic differences of genus megalobrama: Bluntnose black bream(M. amblycephala), guangdong black bream (M. hoffmanni) and black bream (M. terminalis)[J]. Acta Zoologica Sinica, 48(3): 339-345.) [11] 罗伟. 2014. 团头鲂EST-SSR的开发及在育种中的应用[D]. 博士学位论文, 华中农业大学, 导师: 王卫明, 高泽霞, pp. 18-31. (Luo W.2014. EST-SSR markers development and application in selective breeding of blunt snout bream[D]. Thesis for Ph. D., Huazhong Agricultural University, Supervisor: Wang W M, Gao Z X, pp. 18-31.) [12] 聂竹兰. 2014. 三角鲂转录组分析与不同地理种群遗传多样性研究[D]. 博士学位论文, 华中农业大学, 导师: 王卫明, pp. 16-49. (Nie Z L.2014. Transcriptome analysis and study on genetic diversity of different geographic populations in Megalobrama terminalis[D]. Thesis for Ph. D., Huazhong Agricultural University, Supervisor: Wang W M, pp. 16-49.) [13] 任昆, 白俊杰, 樊佳佳, 等. 2013. 草鱼的微卫星亲权鉴定[J]. 南方农业学报, 44(08): 1367-1371. (Ren K, Bai J J, Fan J J, et al.2013. Parentage identification of grass carp (Ctenopharyngodon idella) using microsatellites[J]. Journal of Southern Agriculture 44(08): 1367-1371.) [14] 宋娜, 高天翔, 韩刚, 等. 2010. 分子标记在渔业资源增殖放流中的应用[J]. 中国渔业经济, 28(03): 111-117. (Song N, Gao T X, Han G, et al.2010. Application of molecular markers in fishery stock enhancement[J]. China Fisheries Economics, 28(03): 111-117.) [15] 宋文, 王艺舟, 祝东梅, 等. 2013. 三个地理种群鲂的形态差异与判别分析[J]. 水产学杂志, 26(04): 1-7. (Song W, Wang Y Z, Zhu D M, et al.2013. Morphological variation and discriminant analysis of three geographical populations of freshwater bream Megalobrama skolkovii[J]. Chinese Journal of Fisheries, 26(04): 1-7.) [16] 田华. 2008. 鲢鳙钱塘江野生群体和养殖群体微卫星的遗传多样性分析[D]. 华中农业大学, 硕士学位论文, 导师: 邹桂伟, pp. 15-46. (Tian H.2008. Analysis of genetic diversity of microsatellites in wild and cultured populations of Qiantang River[D]. Thesis for M. S., Huazhong Agricultural University, Supervisor: Zou G W, pp. 15-46.) [17] 童勇义. 2001. 钱塘江下游渔业资源开发利用现状及制约因素浅析[J]. 中国水产, (04): 18-19. (Tong Y Y. 2001. Analysis on the Status Quo and Constraints of Fishery Resources Development and Utilization in the Lower Reaches of Qiantang River[J]. Chinese Journal of Fisheries, (04): 18-19.) [18] 文亚峰, Kentaro Uchiyama, 韩文军, 等. 2013. 微卫星标记中的无效等位基因[J]. 生物多样性, 21(01): 117-126. (Wen Y F, Kentaro U, Han W J, et al.2013. Null alleles in microsatellite markers[J]. Biodiversity Science, 21(01): 117-126.) [19] 吴成宾, 李福贵, 陈杰, 等. 2015. 鳊鲂鱼类的染色体核型及DNA含量分析[J]. 上海海洋大学学报, 24(06): 801-809. (Wu C B, Li F G, Chen J, et al.2015. Karyotype and DNA contents analysis of Parabramis and Megalobrama[J]. Journal of Shanghai Ocean University, 24(06): 801-809.) [20] 于飞, 王伟继, 孔杰, 等. 2009. 微卫星标记在大菱鲆(Scophthalmus maximus L.)家系系谱印证中的应用研究[J]. 海洋学报, 31(3): 127-136. (Yu F, Wang W J, Kong J, et al.2009. The application of microsatellite markers for genealogical identification in selective breeding program of turbot (Scophthalmus maximus L.)[J]. Acta Oceanologica Sinica, 31(3): 127-136.) [21] 曾庆凯, 孙成飞, 董浚键, 等. 2017. 翘嘴鳜微卫星标记亲权鉴定技术的建立与应用[J]. 农业生物技术学报, 25(06): 976-984. (Zeng Q K, Sun C F, Dong J J, et al.2017. Establishment and utilization of paternity identification in mandarin fish (Siniperca chuatsi) using microsatellites[J]. Journal of Agricultural Biotechnology, 25(06): 976-984.) [22] 张丹, 傅建军, 张利德, 等. 2019. 鳙基于10个微卫星标记的亲子鉴定分析[J]. 基因组学与应用生物学, 38(7): 2949-2957. (Zhang D, Fu J J, Zhang L D, et al.2019. The parentage analysis of Bighead Carp (Hypophthalmichthys nobilis) based on ten microsatellite markers[J]. Genomics and Applied Biology, 38(7): 2949-2957.) [23] 张倩倩, 陈杰, 蒋霞云, 等. 2014. 不同鳊鲂鱼类群体微卫星DNA指纹图谱的构建和遗传结构分析[J]. 水产学报, 38(01): 15-22. (Zhang Q Q, Chen J, Jiang X Y, et al.2014. Establishment of DNA fingerprinting and analysis on genetic structure of different Parabramis and Megalobrama populations with microsatellite[J]. Journal of Fisheries of China, 38(01): 15-22.) [24] 张小谷, 童金苟, 熊邦喜. 2006. 微卫星标记在鱼类遗传及育种研究中的应用[J]. 农业生物技术学报, 14(1): 117121. (Zhang X G, Tong J G, Xiong B X.2006. Applications of microsatellite markers on studies of genetics and breeding of fishes[J]. Journal of Agricultural Biotechnology, 14(1): 117-121.) [25] 张正义, 邢秀梅, 胡鹏飞, 等. 2018. 微卫星标记及其在动物亲缘关系鉴定中的应用[J]. 基因组学与应用生物学, 37(04): 1406-1412. (Zhang Z Y, Xing X M, Hu P F, et al.2018. Microsatellite markers and their application in animal genetic relationship identification[J]. Genomics and Applied Biology, 37(4): 1406-1412.) [26] 周辉霞, 甘维熊. 2017. 鱼类标记技术研究进展及在人工增殖放流中的应用[J]. 湖北农业科学, 56(7): 1206-1210. (Zhou H X, Gan W X.2017. Advances in fish labeling technology and its application in artificial poliferation and release[J]. Hubei Agricultural Sciences, 56(7): 1206-1210.) [27] 周少翌, 曹富康, 杜建明. 1989. 钱塘江的渔业评价及合理利用渔业资源的初步设想[J]. 水利渔业, (06): 21-23. (Zhou S Y, Cao F K, Du J M. 1989. The fishery evaluation of Qiantang river and the preliminary thoughts on rational utilization of fishery resources[J]. Water Resources and Fisheries, (06): 21-23.) [28] Anders P J.1998. Conservation aquaculture and endangered species: Can objective science prevail over risk anxiety?[J]. Fisheries, 23(11): 28-31. [29] Botstein D, Whiter R L, Skolnick M, et al.1980. Construction of a linkage map in man using restriction fragment length polymorphisms[J]. American Journal of Human Genetics, 32(3): 314-331. [30] Castro J, Pino A, Hermida M, et al.2006. A microsatellite marker tool for parentage analysis in Senegal sole (Solea senegalensis): Genotyping errors null alleles and conformance to theoretical assumptions[J]. Aquaculture, 261(4): 1194-1203. [31] Jeong D S, Gonzalez E B, Morishima K, et al.2007. Parentage assignment of stocked black sea bream Acanthopagrus schlegelii in Hiroshima Bay using microsatellite DNA markers[J]. Fisheries Science, 73(4): 823-830. [32] Matson S E, Camara M D.2008. P-LOCI: A computer program for choosing the most efficient set of loci for parentage assignment[J]. Molecular Ecology Resources, 8: 765-768. [33] Hansen M M, Kenchington E, Nielsen E E.2001. Assigning individual fish to populations using microsatellite DNA markers[J]. Fish and Fisheries, 2(2): 93-112. [34] Sekino M, Saitoh K, Yamada L, et al.2003. Microsatellite-based pedigree tracing in a Japanese flounder Paralichthys olivaceus hatchery strain: Implications for hatchery management related to stock enhancement program[J]. Aquaculture, 221(I-4): 255-263. [35] Souza C A, Paiva S R, McManus C M, et al.2012. Genetic diversity and assessment of 23 microsatellite markers for parentage testing of Santa Inês hair sheep in Brazil[J]. Genetics and Molecular Research, 11(2): 1217-1229 [36] Wang D, Shi J, Carlson S R, et al.2003. A Low Cost, High-through put polyacrylamide gel electrophoresis system for genotyping with microsatellite DNA markers[J]. Crop Science, 43(5): 1828-1832. |
|
|
|