|
|
Analysis of Differences in Microbial Community Structure of Eel(Anguilla japonica) Pond Before and After Pond-drying Based on High-throughput Sequencing |
WANG Rui-Ning1,2, WANG Miao1, HUANG Qiu-Biao3, YI Meng-Meng1, LI Zhong-Hui1,2, LI Qing-Yong3, ZHU De-Xing3, LU Mai-Xin1,* |
1 Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture; Pearl River Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou 510380, China; 2 College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai 201306, China; 3 Fisheries Research & Extension Center of Huizhou, Huizhou 516002, China; |
|
|
Abstract Pond-drying can kill the pernicious microbe in the pond and decomposes organic matter in the sediment, which is a remediation method commonly used during the pond culture. Therefore, it is important to investigate the diversity, distribution and function of microorganisms in the pond before and after pond-drying. The present study investigated the effects of pond-drying on the aquaculture environment and microbial community structure in the water and sediment before and after pond-drying in the eel (Anguilla japonica) culture pond. The contents of ammonia nitrogen (NH4+), nitrite (NO2-), nitrate (NO3-), total nitrogen (TN), total phosphorus (TP) were measured and the changes of microbial community structure were analyzed through high-throughput sequencing. The results showed that pond-drying had significantly decrease effect on the contents of NO2-, NO3-, TN and TP in water (P<0.05) as well as the contents of TP in sediment (P<0.05). The results of high-throughput sequencing analysis showed that Proteobacteria was the main kind of bacteria in the water and sediment after pond-drying, and the abundances of Proteobacteria, Nitrospirae and Bacteroidetes were increased, while the pernicious microbe such as Cyanobacteria was decreased in the pond at the level of the phylum. At the genus level, the beneficial bacteria such as Novosphingobium, Sediminibacterium, Limnohabitans and Rhodobacter were increased, while the pernicious microbe such as Microcystis and Ellin6067 were decreased. This current study showed that pond-drying could change the microbial community structure in the water and sediment, and have a significant effect on the pond environment remediating. It provides some theoretical references for improving the environment of aquaculture pond in the future.
|
Received: 28 November 2019
|
|
Corresponding Authors:
* mx-lu@163.com
|
|
|
|
[1] 陈红菊, 王慧, 孔维祎, 等. 2019. 氨氮降解菌的筛选、鉴定与复合菌水质调控效果研究[J]. 水生生物学报, 43(04): 875-883. (Chen H J, Wang H, Kong W Y, et al.2019. Screening and identirication of degreading ammonianitrogen bacteria and its effect on water quality control[J]. Acta Hydrobiologica Sinica, 43(04): 875-883.) [2] 窦妍, 丁君, 王轶南, 等. 2014. 黄、渤海春季刺参肠道及养殖池塘细菌菌群的多样性[J]. 大连海洋大学学报, 29(06): 572-576. (Dou Y, Ding J, Wang Y N, et al.2014. Flora diversity in intestine and culture ponds in sea cucumber Apostichopus japonicus in Yellow Sea and Bohai in spring[J]. Journal of Dalian Fisheries University, 29(06): 572-576.) [3] 郭忠宝, 王柏明, 阴晴朗, 等. 2019. 浮床种植空心菜对罗非鱼养殖池塘水质的净化效果[J]. 南方农业学报, 50(06): 1378-1384. (Guo Z B, Wang B M, Yin Q L, et al.2019. Purification effects of floating bed cultivation of water spinach on tilapia aquaculture pond water quality[J]. Journal of Southern Agriculture, 50(06): 1378-1384.) [4] 韩建刚, 曹雪. 2013.典型滨海湿地干湿交替过程氮素动态的模拟研究[J]. 环境科学, 34(06): 2383-2389. (Han J G, Cao X.2013. Effects of drying-rewetting alternation on nitrogen dynamics in a typical coastal wetland: A simulation study[J]. Environmental Science, 34(06): 2383-2389.) [5] 江肖良, 李孟, 张少辉, 等. 2018. 4种不同工况生物滤池净化效能与微生物特性分析[J]. 环境科学, 39(12): 5503-5513. (Jiang X L, Li M, Zhang S H, et al.2018. Purification efficiency and microbial characteristics of four biofilters operated under different conditions[J]. Environmental Science, 39(12): 5503-5513.) [6] 李保民, 张敏, 蔡清武, 等. 2017. 不同修复方式下养殖池塘底质营养物质的迁移特征[J]. 水产科学, 36(01): 72-77. (Li B M, Zhang M, Cai Q W, et al.2017. Removal characteristics of nitrogen and phosphorus in polluted sediment in aquaculture ponds by different remediations[J]. Fisheries Science, 36(01): 72-77.) [7] 李革雷, 陈昌福, 高宇, 等. 2012. 3种养殖模式水体中细菌多样性研究[J]. 华中农业大学学报, 31(03): 381-390. (Li G L, Chen C F, Gao Y, et al.2012. Biodiversity of aquatic microbial communities in three aquacultural systems[J]. Journal of Huazhong Agricultural University, 31(03): 381-390.) [8] 李晓, 李冰, 董玉峰, 等. 2014. 精养团头鲂池塘沉积物微生物群落的结构特征及组成多样性分析[J]. 水产学报, 38(02): 218-227. (Li X, Li B, Dong Y F, et al.2014. Analysis of sediment microbial communities in Megalobrama amblycephala intensive rearing pond[J]. Journal of Fisheries of China, 38(02): 218-227.) [9] 刘松林. 2000. 国外应用土壤暴晒技术防治土传有害生物[J]. 中国植保导刊, 020(006), 43-44. (Liu S L.2000. Application of soil exposure technology to control soil-borne pests in abroad[J]. China Plant Protection, 020(006): 43-44.) [10] 路斌, 魏南, 余德光, 等. 2015. 添加硝酸钙对池塘沉积物中理化因子的影响研究[J]. 中国农学通报, 31(26): 51-55. (Lu B, Wei N, Yu D G, et al.2015. Effect of calcium nitrate on physicochemical factors of sediment in pond[J]. Chinese Agricultural Science Bulletin, 31(26): 51-55.) [11] 农业农村部渔业渔政管理局. 2019. 中国渔业统计年鉴[M]. 北京: 中国农业出版社. pp. 21-49. (Fisheries Administration of the Ministry of Agriculture and Rural Affairs. 2019. China fisheries statistical yearbook[M]. China Agricultural Press, Beijing, China, pp. 21-49.) [12] 史丽娜, 可小丽, 刘志刚, 等. 2015. 罗非鱼-鱼腥草共生养殖池塘沉积物菌群结构与功能特征[J]. 中国农学通报, 31(14): 73-82. (Shi L N, Ke X L, Liu Z G, et al.2015. Effect of Houttuynia cordata floating-bed on the structure and function of bacterial community in the sediments of tilapia aquacultural system[J]. Chinese Agricultural Science Bulletin, 31(14): 73-82.) [13] 王超, 赖子尼, 李跃飞, 等. 2012. 西江颗粒直链藻种群生态特征[J]. 生态学报, 32(15): 4793-4802. (Wang C, Lai Z N, Li Y F, et al.2012. Population ecology of Aulacoseira granulata in Xijiang River[J]. Acta Ecologica Sinica, 32(15): 4793-4802.) [14] 王淼, 卢迈新, 衣萌萌, 等. 2020. 水体中泼洒复合乳杆菌对尼罗罗非鱼养殖池塘环境、肠道和鳃健康的影响[J]. 水产学报, 44(04): 651-660. (Wang M, Lu M X, Yi M M, et al.2020. Effect of mixed culture of Lactobacillus as water additive on the environment of pond, and the health of intestine and gill of tilapia (Oreochromis niloticus)[J]. Journal of Fisheries of China, 44(04): 651-660.) [15] 王鹏, 陈波, 张华. 2017. 基于高通量测序的鄱阳湖典型湿地土壤细菌群落特征分析[J]. 生态学报, 37(05): 1650-1658. (Wang P, Chen B, Zhang H.2017. High throughput sequencing analysis of bacterial communities in soils of a typical Poyang Lake wetland[J]. Acta Ecologica Sinica, 37(05): 1650-1658.) [16] 杨坤杰, 王欣, 熊金波, 等. 2016. 健康和患病凡纳滨对虾幼虾消化道菌群结构的比较[J]. 水产学报, 40(11): 1765-1773. (Yang K J, Wang X, Xiong J B, et al.2016. Comparison of the bacterial community structures between healthy and diseased juvenile shrimp (Litopenaeus vannamei) digestive tract[J]. Journal of Fisheries of China, 40(11): 1765-1773.) [17] 杨天燕, 孟玮, 高攀, 等. 2019. 基于高通量测序的鱼菜共生池塘与普通池塘微生物群落结构比较[J]. 水生生物学报, 43(5): 1104-1113. (Yang T Y, Meng W, Gao P, et al.Bacterial community structure in aquaponics pond and common pong based on high-throughput sequencing technology[J]. Acta Hydrobiologica Sinica, 43(5): 1104-1113.) [18] 曾碧健, 岳晓彩, 黎祖福, 等. 2016. 生态浮床原位修复对海水养殖池塘浮游动物群落结构的影响[J]. 海洋与湖沼, 47(02): 354-359. (Zeng B J, Yue X C, Li Z F, et al.2016. Effect of ecological floating bed on zooplankton community structure in a mariculture pond[J]. Oceanologia Et Limnologia Sinica, 47(02): 354-359.) [19] 章霞, 徐志进, 柳敏海, 等. 2019. 循环水养殖系统中不同滤料生物挂膜水处理效果及微生物群落分析[J/OL]. 大连海洋大学学报, 1-9. (Zhang X, Xu Z J, Liu M H, et al.2019. Analysis of biofilm water treatment effect and microbial community of different filter materials in circulating aquaculture system[J/OL]. Journal of Dalian Fisheries University, 1-9.) [20] 周劲风, 温琰茂. 2004. 珠江三角洲基塘水产养殖对水环境的影响[J]. 中山大学学报(自然科学版), 43(5): 103-106. (Zhou J F, Wen Y M.2004. Effects of fish aquaculture on water environment in the Zhujiang River Delta[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 43(5): 103-106.) [21] 朱卫, 郭丽芸, 唐忠林, 等. 2019. 鲫鱼养殖池塘底泥菌群结构及常见可培养菌分析[J]. 科学技术与工程, 19(04): 259-263. (Zhu W, Guo L Y, Tang Z L, et al.2019. Analyses of bacterial community structure and common culturable bacteria in the sediments of carp cultured ponds[J]. Science Technology and Engineering, 19(04): 259-263.) [22] Avnimelech Y, Kochba M.2009. Evaluation of nitrogen uptake and excretion by tilapia in bio floc tanks, using 15N tracing[J]. Aquaculture, 287(1): 163-168. [23] Caporaso J G, Lauber C L, Walters W A, et al.2011. Global patterns of 16s rRNA diversity at a depth of millions of sequences per sample[J]. Proceedings of the National Academy of Sciences of the USA, 108(Suppl 1): 4516-4522. [24] Edgar R C.2013. UPARSE: Highly accurate OTU sequences from microbial amplicon reads[J]. Nature Methods, 10(10): 996. [25] Fan L, Chen J, Meng S, et al.2017. Characterization of microbial communities in intensive GIFT tilapia (O reochromis niloticus) pond systems during the peak period of breeding[J]. Aquaculture Research, 48(2): 459-472. [26] Gold A C, Thompson S P, Piehler M F.2017. Coastal stormwater wet pond sediment nitrogen dynamics[J]. Science of the Total Environment, 609: 672-681. [27] Kamenir Y, Dubinsky Z, Zohary T.2004. Phytoplankton size structure stability in a meso-eutrophic subtropical lake[J]. Hydrobiologia, 520(1-3): 89-104. [28] Kirchman D L.2002. The ecology of Cytophaga-Flavobacteria in aquatic environments[J]. FEMS Microbiology Ecology, 39(2): 91-100. [29] Liang Y, Li D, Zhang X, et al.2014. Microbial characteristics and nitrogen removal of simultaneous partial nitrification, anammox and denitrification (SNAD) process treating low C/N ratio sewage[J]. Bioresource Technology, 169: 103-109. [30] Liu Z P.2005. Novosphingobium taihuense sp. nov., a novel aromatic-compound-degrading bacterium isolated from Taihu Lake, China[J]. International Journal of Systematic & Evolutionary Microbiology, 55(3): 1229-1232. [31] Lv X, Yu J, Fu Y, et al.2014. A meta-analysis of the bacterial and archaeal diversity observed in wetland soils[J]. The Scientific World Journal, 2014: 1-12. [32] Moriarty D J W.1997. The role of microorganisms in aquaculture ponds[J]. Aquaculture, 151(1-4): 333-349. [33] Nogueira M G.2000. Phytoplankton composition, dominance and abundance as indicators of environmental compartmentalization in Jurumirim Reservoir (Paranapanema River), São Paulo, Brazil[J]. Hydrobiologia, 431(2-3): 115-128. [34] Nogueira M G.2001. Zooplankton composition, dominance and abundance as indicators of environmental compartmentalization in Jurumirim Reservoir (Paranapanema River), São Paulo, Brazil[J]. Hydrobiologia, 455(1-3): 1-18. [35] Piedrahita R H.2003. Reducing the potential environmental impact of tank aquaculture effluents through intensification and recirculation[J]. Aquaculture, 226(1): 35-44. [36] Wang Y, Sheng H F, He Y, et al.2012. Comparison of the levels of bacterial diversity in freshwater, intertidal wetland, and marine sediments by using millions of illumina tags[J]. Applied & Environmental Microbiology, 78(23): 8264-8271. [37] Zeng Y, Ma Y, Wei C, et al.2010. Bacterial diversity in various coastal mariculture ponds in Southeast China and in diseased eels as revealed by culture and culture‐independent molecular techniques[J]. Aquaculture Research, 41(9): e172-e186. [38] Zhang K Q, Li Y,Li J X.2006. Application of the compound microbiological preparation in fish pond[J]. Marine Sciences, 30(9): 88-91. |
|
|
|