|
|
Effects of Alkaline Stress on AKP Gene Expression and Physiology Response in Leuciscus waleckii |
MI Bo-Han1,2, ZHAO Xue-Fei3, GAO Shan2,4, CHANG Yu-Mei2, SUN Bo2, LUO Liang2, ZHANG Li-Min2, LIANG Li-Qun2,* |
1 National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; 2 Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China; 3 College of Wildlife and Protected Area, Northeast Forestry University,Harbin 150040, China; 4 College of Marine Life and Fisheries, Jiangsu Ocean University, Lianyungang 222000, China |
|
|
Abstract Alkaline phosphatase (AKP) can catalyze a variety of phosphorus-related hydrolysis reactions, and is a reference indicator for immune function and health status of organisms. Leuciscus waleckii is a kind of fish that is extremely resistant to the environment (especially high carbonate). In order to clarify various physiological reactions and health conditions in high alkali environments, two geographical groups of L. waleckii, which were Dalinuoer Lake L. waleckii (short for alkaline L. waleckii) from alkaline water and Songhua River Leuciscus waleckii (short for freshwater L. waleckii) from fresh water, were set to 30 and 50 mmol/L NaHCO3 for 20 d. Then the blood was taken out and placed in the Automatic microplate reader to determine the concentration of AKP in serum. Under the condition of 30 mmol/L carbonate alkalinity, the AKP activity of freshwater L. waleckii was significantly higher than that of alkaline L. waleckii (P<0.05). At the same time, based on the AKP gene sequence of the closely related species Cyprinus carpio, the AKP gene in L. waleckii was cloned, and AKP gene expression in the muscle, sputum, liver, brain and kidney was detected by real-time quantitative PCR. The results showed that the AKP ORF of L. waleckii was 876 bp in length (GenBank No. MN473375) and encoded 291 amino acids. The expression of AKP gene in different tissues of the two squids were different. The AKP gene expression in alkaline water L. waleckii increased in the liver with the increasing of alkalinity. The AKP gene expression in freshwater species increased in the kidney with the increasing of alkalinity. The AKP gene expression at different alkalinity levels in multiple tissues showed significant differences (P<0.05). In summary, the AKP gene might play a role in the alkali-resistant response in L. waleckii. This study could provide basic data for further investigation on the involvement of AKP in the alkali-resistance in L. waleckii.
|
Received: 12 November 2019
|
|
Corresponding Authors:
*, liangliqun@hrfri.ac.com
|
|
|
|
[1] 池炳杰, 常玉梅, 闰学春, 等. 2010. 瓦氏雅罗鱼达里湖群体和乌苏里江群体的遗传多样性和遗传结构分析[J]. 中国水产科学, 17(2): 1-8. (Chi B J, Chang Y M, Yan X C, et al.2010. Genetic variability and genetic structure of Leuciscus waleckii Dybowski in Wusuli River and Dali Lake[J]. Journal of Fishery Sciences of China, 17(2): 1-8.) [2] 窦新杰, 常玉梅, 唐然, 等. 2014. 瓦氏雅罗鱼群体基于COI序列的遗传多样性分析[J]. 华北农学报, 29(S1): 29-34. (Dou X J, Chang Y M, Tang R, et al.2014. Genetic diversity of Leuciscus waleckii populations based on COI sequence[J]. Agriculturae Boreali-Sinica, 29(S1): 29-34.) [3] 何强, 常玉梅, 苏宝锋, 等. 2016. 碳酸盐碱度对达里湖瓦氏雅罗鱼耗氧率、氨氮排泄和排氨基因表达的影响[J]. 上海海洋大学学报, 25(04): 551-558. (He Q, Chang Y M, Su B F, et al.2016. Effects of carbonate alkalinities on oxygen consumption, ammol/lonia excretion and ammol/lonia excretion gene expression in Leuciscus waleckii Dybowski[J]. Journal of Shanghai Ocean University, 25(04): 551-558.) [4] 李玉全. 2014. pH胁迫对脊尾白虾代谢酶活力的影响[J].南方农业学报, 45(06): 1098-1101. (Li Y Q.2014. Effects of pH stress on activities of phosphatase in Exopalaemon carinicauda Holthuis[J]. Journal of Southern Agriculture, 45(06): 1098-1101.) [5] 宋翠艳. 2011. 不同湖泊瓦氏雅罗鱼血液指标和抗氧化酶的研究[D]. 硕士学位论文, 内蒙古农业大学, 导师: 张玉, pp. 34-41. (Song C Y.2011. Study on blood Physiological Indices and antioxidant enzymes of Leuciscus waleckii from different lake[D]. Thesis for M.S., Inner Mongolia Agricultural University, Supervisor: Zhang Y, pp. 34-41.) [6] 王楠, 常玉梅, 唐然, 等. 2015. 瓦氏雅罗鱼耐碱性状相关分子标记的筛选[J]. 中国水产科学, 22(06): 1105-1114. (Wang N, Chang Y M, Tang R, et al.2015. Screening microsatellite markers associated with alkaline tolerance in Leuciscus waleckii[J]. Journal of Fishery Sciences of China, 22(06): 1105-1114.) [7] 武玉强, 陈学豪, 张孝杰,等. 2013. 塔玛亚历山大藻对厦门文昌鱼磷酸酶活性的影响[J]. 海洋环境科学, 32(03): 357-359. (Wu Y Q, Chen X H, Zhang X J, et al.2013. Effect of Alexandrium tamarense on ACP and ALP in the Branchiostoma belcheri of Xiamen[J]. Marine Environmental Science, 32(03): 357-359.) [8] 张武肖, 孙盛明, 戈贤平, 等. 2015. 急性氨氮胁迫及毒后恢复对团头鲂幼鱼鳃、肝和肾组织结构的影响[J]. 水产学报, 39(02): 233-244. (Zhang W X, Sun S M, Ge X P, et al.2015. Acute effects of ammol/lonia exposure on histopathology of gill, liver and kidney in juvenile Megalobrama amblycephala and the post-exposure recovery[J]. Journal of Fisheries of China, 39(02): 233-244.) [9] 赵兰, 徐鹏, 孙效文. 2013. 碳酸盐碱度胁迫下鲤鱼氨排泄相关基因的差异表达[J]. 生物技术通报, 2013(04): 185-193. (Zhao L, Xu P, Sun X W.2013. Ammol/lonia excretion related genes expression of commol/lon carp under the stress of carbonate alkalinity[J]. Biotechnology Bulletin, 2013(04): 185-193.) [10] 庄青青. 2013. 盐度胁迫下尼罗罗非鱼鳃离子细胞和Na+-K+-ATPase a1的渗透调节[D]. 硕士学位论文, 上海海洋大学, 导师: 赵金良, pp. 38-45. (Zhuang Q Q.2013. Osmoregulation of ionocytes and Na+-K+-ATPase a1 in gill of Oreochromis niloticus under salinities stress[D]. Thesis for M.S., Shanghai Ocean University, Supervisor: Zhao J L, pp. 38-45.) [11] 章征忠, 张兆琪, 董双林, 等. 1999. pH、盐度、碱度对淡水养殖种类影响的研究进展[J]. 中国水产科学, 1999(04): 95-98. (Zhang Z Z, Zhang Z Q, Dong S L, et al.1999. Advance in research on the effects of pH, salinity and alkalinity on freshwater cultured species[J]. Journal of Fishery Sciences of China, 1999(04): 95-98.) [12] Galat D L, Post G, Keefe T J, et al.1985. Histological changes in the gill, kidney and liver of Lahontan cutthroat trout, Salmo clarki henshawi, living in lakes of different salinity‐alkalinity[J]. Journal of Fish Biology, 27(5): 533-552. [13] Gu J, Li L Y, Li Y, et al.2005. Purification and partial characterization of two acid phosphatase forms from pearl oyster (Pinctada fucata)[J]. Comparative Biochemistry and Physiology, Part B, 143(2): 229-235. [14] Li X, Wilmanns M, Thornton J, et al.2013. Elucidating human phosphatase-substrate networks[J]. Science Signaling, 6(275): rs10. [15] Liberti S, Sacco F, Calderone A, et al.2013. HuPho: The human phosphatase portal[J]. The FEBS Journal, 280(2): 379-387. [16] Millán J L.2009. Alkaline Phosphatases: Structure, substrate specificity and functional relatedness to other members of a large superfamily of enzymes[J]. Purinergic Signalling, 2(2): 335-341. [17] Miron D D S, Moraes B, Becker A G, et al.2008. Ammol/lonia and pH effects on some metabolic parameters and gill histology of silver catfish, Rhamdia quelen (Heptapteridae)[J]. Aquaculture, 277(3-4): 192-196. [18] Oguz A R.2015. A histological study of the kidney structure of van fish (Alburnus tarichi) acclimated to highly alkaline water and freshwater[J]. Marine and Freshwater Behaviour and Physiology, 48(2): 135-144. [19] Reiss I, Inderrieden D, Kruse K.1996. Measurement of skeletal specific alkaline phosphatase in disorders of calcium metabolism in chlidhood[J]. Monatsschrift Kinderheilkunde, 144(9): 885-890. [20] Stephen D, Richard L S, Eugene B, et al.1987. Photoperiod control of Parr-Smolt transformation in Atlantic salmon (Salmo salar): Changes in salinity tolerance, gill Na+-K+ -atpase activity, and plasma thyroid hormones[J]. Canadian Journal of Fisheries and Aquatic Sciences, 44(8): 1462-1468. [21] Tsvetkov I L, Tsvetkova M A, Zarubin S L, et al.2006. Quality assessment of wastewater and natural waters by using a biochemical index-the activity of acid phosphatase in freshwater mollusks[J]. Water Resources, 33(1): 56-63. |
|
|
|