|
|
Mapping and Meta-analysis of QTLs for the Productive Tiller Number in Wheat (Triticum aestivum) |
ZUO Yu-Xin, LIU Yuan, ZHANG Pei-Pei, LI Meng-Fei, CHENG Hong-Bo, CHEN Si-Jin, XING Hua, YANG De-Long* |
Gansu Provincial Key Lab of Aridland Crop Science / College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China |
|
|
Abstract Productive tiller number (PTN) is one of the important factors for the yield performance of wheat (Triticum aestivum) and a complex quantitative trait controlled by polygenes. In this case, it is critical to explore the main-effect quantitative trait loci (QTL) and its closely linked molecular markers by the strategies of QTL mapping and meta-analysis in molecular genetic improvement in wheat breeding. In this study, a set of recombinant inbred lines (RIL) of wheat under different water conditions was used to map QTLs for the PTN trait. These identified QTLs were further integrated with reported QTLs for meta-analysis. The results showed that phenotypic values of PTN in the RIL varied widely with significantly transgressive segregation which were sensitive to water stress and thus indicated a low heritability. Under different water conditions, a total of 22 additive QTLs were identified and distributed on all chromosomes except chromosome 4A, accounting for 5.86%~13.84% of phenotypic variations. A total of 97 QTLs governing the PTN from 15 mapping populations were used to construct QTL consensus map in wheat. Consequently, 33 of meta QTLs and their closely linked molecular markers were available and confirmed. The minimum interval of meta QTL was 1.94 cM. The study would be useful to fine QTL mapping and molecular marker-assisted selection breeding for the productive tiller number in wheat.
|
Received: 21 July 2019
|
|
Corresponding Authors:
* yangdl@gsau.edu.cn
|
|
|
|
[1] 毕晓静. 2013. 小麦重要农艺性状的遗传分析与QTL定位[D]. 硕士学位论文, 西北农林科技大学, 导师: 马守才, pp. 33-48. (Bi X J.2013.Genetic analysis and QTL of agronomic traits in wheat[D]. Thesis for M.S., Northwest A&F University, Supervisor: Ma S C, pp. 33-48.) [2] 方永丰, 李永生, 白江平, 等. 2012. 玉米持绿相关QTL整合图谱构建及一致性QTL区域内候选基因发掘[J]. 草业学报, 21(4): 175-185. (Fang Y F, Li Y S, Bai J P, et al.2012. Construction of integration QTL map and identification of candidate genes for stay-green in maize[J]. Acta Prataculturae Sinica, 21(4): 175-185.) [3] 高尚, 莫洪君, 石浩然, 等. 2016. 利用SNP基因芯片技术进行小麦遗传图谱构建及重要农艺性状QTL分析[J]. 应用与环境生物学报, 22(01): 85-94. (Gao S, Mo H J, Shi H R, et al.2016. Construction of wheat genetic map and QTL analysis of main agronomic traits using SNP genotyping chips technology[J]. Chinese Journal of Applied and Environmental Biology, 22(01): 85-94.) [4] 苟璐璐, 刘涛, 权文彦, 等. 2016. 基于一致性QTL区段四川小麦地方品种产量和品质相关性状的遗传分析[J]. 农业生物技术学报, 24(5): 657-666. (Gou L L, Liu T, Quan W Y, et al.2016. Genetic analysis of yield and quality related traits in Sichuan wheat landraces based on consensus QTL regions[J]. Journal of Agricultural Biotechnology, 24(5): 657-666.) [5] 黄兴东, 赵建奎, 张鹏骞, 等. 2017. 小麦有效分蘖QTL分析[J]. 山西农业科学, 45(4): 498-501. (Huang X D, Zhao J K, Zhang P Q, et al.2017. QTL analysis for effective tillers in wheat[J]. Journal of Shanxi Agricultural Sciences, 45(4): 498-501.) [6] 胡亮亮,叶亚琼,吕婷婷,等. 2015. 不同水分环境下小麦粒重QTL定位及遗传分析[J].草业学报, 24(8): 118-129. (Hu L L, Ye Y Q, Lv T T, et al.2015. QTL mapping and genetic analysis for grain weight in wheat (Triticum aestivum L.) under different water environments[J]. Acta Pratacuturae Sinica, 24(8):118-129.) [7] 胡雅君, 栗孟飞, 杨德龙, 等. 2016. 小麦籽粒WSC含量QTL的整合与元分析[J]. 麦类作物学报, 36(8):989-995. (Hu Y J, Li M F, Yang D L, et al.2016. Integration and meta-analysis of quantitative trait loci for water-soluble carbohydrate content in wheat grain[J]. Journal of Triticeae Crops, 36(8): 989-995.) [8] 李丽, 杨德龙, 栗孟飞, 等. 2013. 不同水分条件下源库调节对小麦营养器官可溶性碳水化合物和籽粒千粒重的影响[J]. 应用生态学报, 24(7): 1879-1888. (Li L, Yang D L, Li M F, et al.2013. Effects of source-sink regulation on WSC in vegetative organs and thousand-grain mass of wheat under different water conditions[J]. Chinese Journal of Applied Ecology, 24(7): 1879-1888.) [9] 马召朋, 栗孟飞, 杨德龙, 等. 2014. 不同水分条件下冬小麦灌浆期茎叶可溶性碳水化合物积累转运与籽粒灌浆的关系[J]. 草业学报, 23(4): 68-78. (Ma Z P, Li M F, Yang D L, et al.2014. Relationship between grain filling and accumulation and remobilization of water soluble carbohydrates in leaf and stem of winter wheat during the grain filling in different water conditions[J]. Acta Prataculturae Sinica, 23(4): 68-78.) [10] 毛双双. 2014. 小麦DH群体农艺性状及穗发芽抗性QTL的遗传研究[D]. 硕士学位论文, 四川农业大学, 导师: 刘亚西, pp. 15-22. (Mao S S.2014. Wheat DH population agronomic traits and pre-harvest sprouting resisitance QTL genetic study[D]. Thesis for M.S., Sichuan Agricultural University, Supervisor: Liu Y X, pp.15-22.) [11] 汤颖子. 2016. 协调型小麦分蘖成穗规律及控制基因的QTL定位[D]. 硕士毕业论文, 四川农业大学, 导师: 任正隆, pp.28-32. (Tang Y Z.2016. Rules of ear bearing and QTL mapping for spike numbers per plant in coordination-type wheat[D]. Thesis for M.S., Sichuan Agricultural University, Supervisor: Ren Z L, pp.28-32.) [12] 王健维, 程宇坤, 叶雪玲, 等. 2015. 小麦品质相关性状的一致性数量性状位点(MQTL)连锁图谱构建[J]. 农业生物技术学报, 23(5): 671-682. (Wang J W, Cheng Y K, Ye X L, et al.2015. Construction of linkage map of the meta quantitative trait loci (MQTL) on quality related traits in wheat (Triticum aestivum L.)[J]. Journal of Agricultural Biotechnology, 23(5): 671-682.) [13] 王培, 李晓林, 杨林, 等. 2012. 小麦单株穗数的遗传分析及基于QTL定位的最优基因型预测[J]. 麦类作物学报, 32(5): 820-827. (Wang P, Li X L, Yang L, et al.2012. Genetic analysis of spike number per plant in wheat and prediction of superior genotype based on QTL information[J]. Journal of Triticeae Crops, 32(5): 820-827.) [14] 吴琼, 齐照明, 刘春燕, 等. 2009. 基于元分析的大豆生育期QTL的整合[J]. 作物学报, 35(8): 1418-1424. (Wu Q, Qi Z M, Liu C Y, et al.2009. An integrated QTL map of growth stage in soybean constructed through meta-analysis[J]. The Crop Journal, 35(8): 1418-1424.) [15] 杨靖. 2017. 小麦产量相关性状的遗传与稳定性分析及QTL定位研究[D]. 博士毕业论文, 四川农业大学, 导师: 任正隆, pp. 52-56. (Yang J.2017. Analysis of the genetic and yield stability traits in wheat (Triticum aestivum. L) and QTL mapping [D]. Thesis for Ph. D, Sichuan Agricultural University, Supervisor: Ren Z L. pp. 52-56.) [16] 杨德龙, 张国宏, 李兴茂, 等. 2012. 小麦重组近交系群体株高和千粒重的抗旱遗传特性[J]. 应用生态学报, 23(6):1569-1576. (Yang D L, Zhang G H, Li X M, et al.2012. Genetic characteristics associated with drought tolerance of plant height and thousand-grain mass of recombinant inbred lines of wheat[J]. Chinese Journal of Applied Ecology, 23(6): 1569-1576.) [17] 杨林, 邵慧, 吴青霞, 等. 2013. 小麦分蘖数和单株穗数QTL定位及上位性分析[J]. 麦类作物学报, 33(5): 875-882. (Yang L, Shao H, Wu Q X, et al.2013. QTLs mapping and epistasis analysis for the number of tillers and spike number per plant in wheat[J]. Journal of Triticeae Crops, 33(5): 875-882.) [18] 叶亚琼, 栗孟飞, 刘媛, 等. 2015. 小麦株高QTL定位及其水分环境互作遗传分析[J]. 华北农学报, 30(5): 83-91. (Ye Y Q, Li M F, Liu Y, et al.2015. QTL mapping and QTL× environmental interactions for plant height in wheat (Triticum aestivum L.)[J]. Acta Agriculturae Boreali-Sinica, 30(5): 83-91.) [19] 张国宏, 杨德龙, 栗孟飞, 等. 2012. 小麦株高发育动态QTL定位及其与水分环境互作遗传分析[J]. 农业生物技术学报, 20(09): 996-1008. (Zhang G H, Yang D L, Li M F, et al.2012. Genetic analysis of QTL mapping for developmental behaviors of plant height and QTL×water regimes interactions in wheat[J]. Journal of Agricultural Biotechnology, 20(09): 996-1008.) [20] 张倩辉, 张晓科, 刘伟华, 等. 2016. 小麦有效分蘖数的遗传分析[J]. 麦类作物学报, 28(04): 573-576. (Zhang Q H, Zhang X K, Liu W H, et al.2008. The inheritance for effective tiller emergence in wheat[J]. Journal of Triticeae Crops, 28(04): 573-576.) [21] Acuna-Galindo M A, Mason R E, Subramanian N K, et al.2015. Meta-analysis of wheat QTL regions associated with adaptation to drought and heat stress[J]. Crop Science, 55(2): 477. [22] Arcade A, Labourdette A, Falque M, et al.2004. BioMercator: Integrating genetic maps and QTL towards discovery of candidate genes[J]. Bioinformatics, 20(14): 2321-2326. [23] An D, Su J, Liu Q, et al.2006. Mapping QTLs for nitrogen uptake in relation to the early growth of wheat (Triticum aestivum L.)[J]. Plant and Soil, 284(1-2): 73-84. [24] Ballesteros D C, Mason R E, Addison C K.et al.2015. Tolerance of wheat to vegetative stage soil waterlogging is conditioned by both constitutive and adaptive QTL[J]. Euphytica, 201(3):329-343. [25] Darvasi A, Soller M.1997. A simple method to calculate resolving power and confidence interval of QTL map location[J]. Behavior Genetics, 27: 125-132. [26] Deng S, Wu X, Wu Y, et al.2011. Characterization and precise mapping of a QTL increasing spike number with pleiotropic effects in wheat[J]. Theoretical & Applied Genetics, 122(2): 281-289. [27] Hanocq E, Laperche A, Jaminon O, et al.2007. Most significant genome regions involved in the control of earliness traits in bread wheat, as revealed by QTL meta-analysis[J]. Theoretical & Applied Genetics, 114(3): 569-584. [28] Griffiths S, Simmonds J, Leverington M, et al.2012. Meta-QTL analysis of the genetic control of crop height in elite European winter wheat germplasm[J]. Molecular Breeding, 29(1): 159-171. [29] Hu Y S, Ren T H, Li Z, et al.2017. Molecular mapping and genetic analysis of a QTL controlling spike formation rate and tiller number in wheat[J]. Gene, 634: 15-21. [30] León J L D D, Escoppinichi R, Geraldo N, et al.2011. Quantitative trait loci associated with salinity tolerance in field grown bread wheat[J]. Euphytica, 181(3): 371-383. [31] Kumar N, Kulwal P L, Balyan H S, et al.2007. QTL mapping for yield and yield contributing traits in two mapping populations of bread wheat[J]. Molecular Breeding, 19(2): 163-177. [32] Liu S, Hall M D, Griffey C A, et al.2009. Meta-analysis of QTL associated with fusarium head blight resistance in wheat[J]. Crop Science, 49(6): 1955. [33] Li Z, Peng T, Xie Q, et al.2010. Mapping of QTL for tiller number at different stages of growth in wheat using double haploid and immortalized F2 populations[J]. Journal of Genetics, 89(4): 409-415. [34] Marza F, Bai G H, Carver B F, et al.2006. Quantitative trait loci for yield and related traits in the wheat population Ning7840×Clark[J]. Theoretical and Applied Genetics, 112(4): 688-698. [35] Narasimhamoorthy B, Gill B S, Fritz A K, et al.2006. Advanced backcross QTL analysis of a hard winter wheat[J]. Theoretical and Applied Genetics, 112(5): 787-796. [36] Naruoka Y, Talbert L E, Lanning S P, et al.2011. Identification of quantitative trait loci for productive tiller number and its relationship to agronomic traits in spring wheat[J]. Theoretical & Applied Genetics, 123(6): 1043-1053. [37] Shah M M, Gill K S, Baenziger P S, et al.1999. Molecular mapping of loci for agronomic traits on chromosome 3A of bread wheat[J]. Crop Science, 39(6): 1728. [38] Somers D J, Isaac P, Edwards K.2004. A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.)[J]. Theoretical and Applied Genetics, 109(6), 1105-1114. [39] Ren T, Hu Y, Tang Y, et al.2018. Utilization of a wheat 55K SNP array for mapping of major QTL for temporal expression of the tiller number[J]. Frontiers in Plant Science, 9: 333. [40] Toker C.2004. Estimates of broad-sense heritability for seed yield and yield criteria in faba bean (Vicia faba L.)[J]. Hereditas, 140: 222-225. [41] Wang D L, Zhu J, Li Z K, et al.1999. Mapping QTLs with epistatic effects and QTL×environment interactions by mixed linear model approaches[J]. Theoretical & Applied Genetics, 99(7-8): 1255-1264. [42] Wang Z, Liu Y, Shi H, et al.2016. Identification and validation of novel low-tiller number QTL in common wheat[J]. Theoretical & Applied Genetics, 129(3): 603-612. [43] Wang R, Liu Y, Isham K, et al.2018. QTL identification and KASP marker development for productive tiller and fertile spikelet numbers in two high-yielding hard white spring wheat cultivars[J]. Molecular Breeding, 38(11): 135 [44] Wu X S, Chang X P, Jing R L.2012. Genetic insight into yield-associated traits of wheat grown in multiple rain-fed environments[J]. PLOS ONE, 7(2): e31249. [45] Xu T, Bian N, Wen M, et al.2017. Characterization of a common wheat (Triticum aestivum L.) high-tillering dwarf mutant[J]. Theoretical and Applied Genetics, 130(3): 483-494. [46] Yang D L, Jing R L, Chang X P, et al.2007. Identification of quantitative trait loci and environmental interactions for accumulation and remobilization of Water-Soluble Carbohydrates in wheat (Triticum aestivum L.) stems[J]. Genetics, 176(1): 571-584. [47] Yu M, Mao S L, Hou D B, et al.2018. Analysis of contributors to grain yield in wheat at the individual quantitative trait locus level[J]. Plant Breeding, 137(1): 35-49. |
[1] |
MENG Yu-Yu, LI Hu-Ying, XU Yuan, WEI Chun-Ru, FAN Run-Qiao, YU Xiu-Mei, ZHAO Wei-Quan, KANG Zhen-Sheng, LIU Da-Qun. Anti-stress Related Expression Analysis of TaSKP2A Gene in Wheat (Triticum aestivum) and Its Interaction Protein Screening[J]. 农业生物技术学报, 2020, 28(4): 571-581. |
|
|
|
|