|
|
QTL Mapping for Yield-related Traits of Rice Restorer Line Luhui8258 (Oryza sativa) |
CAO Ying-Jiang*, YOU Shu-Mei*, JIANG Kai-Feng, ZHANG Tao, YANG Li, YANG Qian-Hua, WAN Xian-Qi, LI Zhao-Xiang, GAO-Lei, Zheng Jia-Kui** |
Rice and Sorghum Research Institute, Sichuan Academy of Agricultural Sciences/Luzhou Branch of National Rice Improvement Center/Key Laboratory of Southwest China Rice Biology and Genetic Breeding, Ministry of Agriculture, Deyang 618000, China |
|
|
Abstract Restorer lines is one of the important parents of three-line hybrid rice (Oryza sativa). Excavating its high-yielding genes is great important for improving the yield of hybrid rice. A recombinant inbred lines (RIL) population derived from a cross-combination of 'Luhui8258' and 'Yanghui34'. The RIL and 2 parents were grown under 3 different environments including Deyang, Suining and Luzhou of Sichuan province, and 8 yield traits including biological yield per plant (BYP), harvest index (HI), yield per plant (YP), effective panicles per plant (EP), spikelet per panicle (SP), full grain per panicle (FGP), seed setting rate (SSR, as a percentage), 1000-grain weight (TGW) were investigated. On the basis of constructing genetic linkage map consisted 184 DNA markers, a total of 62 QTLs for yield-related traits distributing on all of the 12 chromosomes were identified. Among them, 2 QTLs synergistic alleles were derived from 'Luhui8258' were detected repeatedly in 3 environments, namely, it were qTGW3 and qFGP6-1, with the contribution rate of 5.92% (Deyang), 7.79% (Suining), 19.04% (Luzhou) and 8.80% (Deyang), 10.90% (Suining), 4.96% (Luzhou), respectively. In addition, 17 yield-related QTL detected in two of these environments, included qBYP6-2, qBYP9 (QTL for BYP), qHI3-1, qHI3-2, qHI12 (for HI), qYP3-2, qYP12 (for YP), qEP2-1, qEP9-2 (for EP), qSP6-1、qSP12 (for SP), qFGP2-1, qFGP2-2, qFGP6-2, qFGP12-2 (for FGP) , qSSR2, qSSR6-1 (for SSR). Among them, 11 QTL synergistic alleles were derived from 'Luhui8258', including qHI3-1, qHI3-2, qBYP6-2, qBYP9, qYP3-2, qEP2-1, qEP9-2, qSSR2, qSSR6-1, qSP6-1, qFGP6-2, the other 6 QTL synergistic alleles were derived from 'Yanghui 34'. This research provides the basis and technical support for fine mapping, cloning and molecular marker-assisted selection of rice yield-related traits in near future breeding program.
|
Received: 21 August 2019
|
|
Corresponding Authors:
** zheng6102@126.com
|
About author:: * The authors who contribute equally |
|
|
|
[1] 陈燕华, 黄大辉, 邱永福, 等. 2014. 水稻主要农艺性状的QTL分析[J]. 华南农业大学学报, 35(5): 42-51. (Chen Y H, Huang D H, Qiu Y F, et al.2014. A QTL analysis of main agronomic characters in rice, Oryza sativa[J]. Journal of South China Agricultural University, 35(5): 42-51.) [2] 方福平, 程式华. 2009. 论中国水稻生产能力[J]. 中国水稻科学, 23(6): 559-566. (Fang F P, Cheng S H.2009. Rice production capacity in China[J]. Chinese Journal of Rice Science, 23(6): 559-566.) [3] 郭小蛟, 张涛, 蒋开锋, 等. 2013. 水稻籼粳交F8、F2群体穗长QTL比较分析[J]. 中国农业科学, 46(23): 4849-4857. (Guo X J, Zhang T, Jiang K F, et al.2013. Comparison of panicle length QTL based on F2 and F8 populations derived from rice subspecies cross[J]. Scientia Agricultura Sinica, 46(23): 4849-4857.) [4] 胡大维, 圣忠华, 陈炜, 等. 2017. 超级稻品种中嘉早17高产相关性状的QTL定位[J]. 作物学报, 43(10): 1434-1447. (Hu D W, Sheng Z H, Chen W, et al.2017. Identification of QTLs associated with high yield of super rice variety Zhongjiazao 17[J]. Acta Agronomica Sinica, 43(10): 1434-1447.) [5] 刘仁虎, 孟金陵. 2003. MapDraw在Excel中绘制遗传连锁图的宏[J]. 遗传, 25(3): 317-321. (Liu R H, Meng J L.2003. MapDraw: A microsoft excel macro for drawing genetic linkage maps based on given genetic linkage data[J]. Hereditas (BEIJING), 25(3): 317-321.) [6] 苏相文, 高方远, 曹墨菊, 等. 2015. 利用重组自交系剖析大穗型香稻保持系川香29B产量相关性状的遗传基础[J]. 分子植物育种, 13(1): 39-50. (Su X W, Gao F Y, Cao M J, et al.2015. Genetic basis of the traits related to yield in rice maintainer line Chuanxiang-29B with large panicle and aroma using recombinant inbred linesn[J]. Molecular Plant Breeding, 13(1): 39-50.) [7] 许凌, 张亚东, 朱镇, 等. 2008. 不同年份水稻产量性状的QTL分析[J]. 中国水稻科学, 22(04): 370-376. (Xu L, Zhang Y D, Zhu Z, et al.2008. Dissection of QTLs in two years for yield component traits in rice (Oryza sativa)[J]. Chinese Journal of Rice Science, 22(04): 370-376.) [8] 赵建国, 蒋开锋, 杨莉, 等. 2013. 水稻产量相关性状QTL定位[J]. 中国水稻科学, 27(4): 344-352. (Zhao J G, Jiang K F, Yang L, et al.2013. QTL mapping for yield related components in a RIL population of rice[J]. Chinese Journal of Rice Science, 27(4): 344-352.) [9] 张应洲, 罗荣剑, 圣忠华, 等. 2017. 日本晴/中嘉早17重组自交系产量性状QTL定位[J]. 中国农业科学, 50(19): 3640-3651. (Zhang Y Z, Luo R J, Sheng Z H, et al.2017. QTL mapping of yield associated traits of Nipponbare×Zhongjiazao 17 RIL population[J]. Scientia Agricultura Sinica, 50(19): 3640-3651.) [10] Ashikari M, Sakakibara H, Lin S Y, et al.2005. Cytokinin oxidase regulates rice grain production[J]. Science, 309(5735): 741-745. [11] Fan C C, Xing Y Z, Mao H L, et al.2006. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein[J]. Theoretical and Applied Genetics, 112(6): 1164-1171. [12] Ikeda M, Kitano H, Matsuoka M.2013. Yield. Genetics and genomics of rice. Plant Genetics and Genomics: Crops and Models[M]. Springer, New York, USA, 5: pp. 227-235 [13] Kazumitsu O, Yuki H, Noriko I O, et al.2007. A QTL cluster for plant architecture and its ecological significance in Asian wild rice[J]. Breeding Science, 57(1): 7-16. [14] Lincoln S E, Daly M J, Lande E S.1993. Constructing Genetic Linkage Maps with MAPMAKER/EXP version 3.0: A Tutorial and Reference Manual[M]. A Whitehead Institute for Biomedical Research Technical Report, USA, pp. 7-40. [15] Li Y B, Fan C C, Xing Y Z, et al.2011. Natural variation in GS5 plays an important role in regulating grain size and yield in rice[J]. Nature Genetics. 43(12): 1266-1269. [16] Li Z, Pinson S R M, Park W D, et al.1997. Epistasis for three grain yield components in rice(Oryza sativa L.)[J]. Genetics, 145(2): 453-465. [17] McCouch S R.2008. Gene nomenclature system for rice[J]. Rice, 1(1): 72-84. [18] Song X J, Wei H, Shi M, et al., 2007. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase[J]. Nature Genetics, 39(5): 623-630. [19] Sun L J, Li X J, Fu Y G, et al.2013. GS6, a member of the GRAS gene family, negatively regulates grain size in rice[J]. Journal of Integrative Plant Biology, 55(10): 938-949. [20] Svetlana T, Genevieve D, Angelika L, et al.2001. Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): Frequency, lengthvariation, transposon associations, and genetic marker potential[J]. Genome Research, 11(8): 1441-1452. [21] Wang S C, Basten C J, Zeng Z B.2010. Windows QTL cartographer 2.5user manual[M]. Raleigh, USA: State University, Bioinformatics Research Center, USA, pp. 25-78. [22] Wang S K, Wu K, Yuan Q B, et al.2012. Control of grain size, shape and quality by OsSPL16 in rice[J]. Nature Genetics, 44(8): 950-954. [23] Wan X Y, Weng J F, Zhai H Q, et al.2008. Quantitative trait loci (QTL) analysis for rice grain width and fine mapping of an identified QTL allele GW-5 in a recombination hotspot region on chromosome 5[J]. Genetics, 179(4): 2239-2252. |
[1] |
LI Yong-Kuan, ZHANG Jing-Yong, ZHAO Guo-Long, LI Rong, LIN Chun-Jing, Zhao Li-Mei, PENG Bao, ZHANG Chun-Bao. Genetic Analysis and Mapping of Rf-I, an Inhibitor of Fertility Restorer 3 Gene for CMS-RN in Soybean (Glycine max)[J]. 农业生物技术学报, 2020, 28(5): 761-770. |
|
|
|
|