|
|
Codon Bias Analysis of Prunus salicina 'Huangguan' Malate Transporter ALMT4, ALMT9 and tDT Genes |
WU Wei-Feng1,2,3, CHEN Ming-Jie2, CHEN Fa-Xing1,* |
1 College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350000, China; 2 Horticultural Plant Biology and Metabolomics Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350000, China; 3 Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China |
|
|
Abstract Aluminum-activated malate transporter 4 gene (ALMT4), aluminum-activated malate transporter 9 gene (ALMT9) and tonoplast dicarboxylate transporter gene (tDT) may be important genes involved in malate transportation and accumulation in plum (Prunus salicina) fruit, to analyze their codon bias is of great significance for subsequent research of gene function. This study used CodonW and CUSP programs to analyze the codon bias of ALMT4, ALMT9 and tDT genes in Prunus salicina 'Huangguan' and compared with the codon bias of the genome of the model species contained Escherichia coli, Saccharomyces cerevisiae, Nicotiana tabacum, Arabidopsis thaliana and Lycopersicon esculentum etc. The results showed that the effective number of codons (ENC) of ALMT4, ALMT9 and tDT genes in Prunus salicina ‘Huangguan’ were much higher than 35, close to 61, and the codon adaptation index (CAI) was much less than 1, close to 0, which indicated their codon bias were weak. ALMT4 and ALMT9 preferred to the codons ending with A or U(T), tDT preferred to the codons ending with U(T) or C. GCA, AGA, UGU, GGU, CCU, ACU, UAU, UUU, GAA, CAU, AAU, GAU were the high frequency codons of ALMT4, GCA, AGG, GGA, CAU, UUG, UCA, ACA, AAU, GAU, UUU, UAC were the high frequency codons of ALMT9, GCU, AGG, CGA, UGC, GAG, GGA, UUG, AGC, UCC, UAU, GAU, CAA, AAG were the high frequency codons of tDT. The gene tree was more able to reflect the botanical classification relationship of species than the cluster tree constructed based on relative synonymous codon usage (RSCU). Considering codon bias differences, cost, convenience and other factors, S. cerevisiae was an ideal heterologous protein expression system for ALMT4, ALMT9, and tDT genes in P. salicina 'Huangguan', and L. esculentum was an ideal heterologous plant expression system. Furthermore, S. cerevisiae and L. esculentum were used as examples to optimize the CDs sequences of ALMT4, ALMT9 and tDT genes in P. salicina 'Huangguan', the modified gene sequences had codon bias features of S. cerevisiae and L. esculentum genome. These results provide a theoretical basis for subsequent research of genes function.
|
Received: 04 April 2019
|
|
Corresponding Authors:
*cfaxing@126.com
|
|
|
|
[1] 晁岳恩, 吴政卿, 杨会民, 等. 2011. 11种植物psbA基因的密码子偏好性及聚类分析[J]. 核农学报, 25(5): 927-932. (Chao Y E, Wu Z Q, Yang H M, et al.2011. Cluster analysis and codon usage bias studies on psbA genes from 11 plant species[J]. Journal of Nuclear Agricultural Sciences, 25(5): 927-932) [2] 冯超. 2014. 基于杨梅RNA-Seq的密码子偏好性与果实品质功能基因转录特性分析[D]. 博士学位论文, 浙江大学, 导师: 陈昆松. pp. 28. (Feng C. 2014. Codon usage profiles and fruit quality related functional gene expression characteristics of Chinese bayberry (Myrica ruba) revealed by RNA-Seq[D]. Thesis for Ph.D., Zhejiang University, Supervisor: Chen K S, pp. 28.) [3] 郭秀丽, 杨路成, 王玉, 等. 2012. 茶树CBF1基因密码子使用特性分析[J]. 遗传, 34(12): 1614-1623. (Guo X L, Yang L C, Wang Y, et al.2012. Analysis of codon use features of CBF gene in Camellia sinensis[J]. Hereditas (Beijing), 34(12): 1614-1623.) [4] 李平, 白云凤, 冯瑞云, 等. 2011. 籽粒苋苹果酸酶(NAD-ME)基因密码子偏好性分析[J]. 应用与环境生物学报, 17(1): 12-17. (Li P, Bai Y F, Feng R Y, et al.2011. Analysis of codon bias of NAD-ME gene in Amaranthus hypochondriacus[J]. Chinese Journal of Applied and Environmental Biology, 17(1): 12-17.) [5] 聂江婷, 白云凤, 贺飞燕, 等. 2014. 籽粒苋丙酮酸磷酸二激酶(PPDK)基因的密码子偏好性[J]. 植物学报, 49(6): 672-681. (Nie J T, Bai Y F, He F Y, et al.2014. Codon bias of pyruvate orthophosphate dikinase gene in Amaranthus hypochondriacus[J]. Chinese Bulletin of Botany, 49(6): 672-681). [6] 孙继峰, 韩太利, 徐立功, 等. 2018. 萝卜ICE1密码子使用偏性分析[J]. 核农学报, 32(3): 0477-0485. (Sun J F, Han T L, Xu L G, et al.2018. Analysis of codon bias of the ICE1 in Radish[J]. Journal of Nuclear Agricultural Sciences, 32(3): 0477-0485.) [7] 孙晶, 何涛, 万闰兰,等. 2014. 铁皮石斛尿苷二磷酸葡萄糖焦磷酸化酶基因(UGP)的密码子偏好性分析[J]. 应用与环境生物学报, 20(5): 759-766. (Sun J, He T, Wan R L, et al.2014. The codon usage bias of UDP-glucose pyrophsphorylase gene (UGP) in Dendrobium officinale[J]. Chinese Journal of Applied and Environmental Biology, 20(5): 759-766.) [8] 文明. 2007. 基因组全序列单核苷酸与二核苷酸组分的结构特征分析[D]. 硕士学位论文, 中山大学, 导师: 张尚宏, pp. 12. (Wen M. 2007. Analysis of compositional features of mononucleotides and dinucleotides in whole-genome sequences[D]. Thesis for M.S., Sun Yat-sen University, Supervisor: Zhang S H, pp. 12.) [9] 巫伟峰. 2017.中国李果实苹果酸转运体的克隆表达及其有机酸的关联性分析[D]. 硕士学位论文, 福建农林大学, 导师: 陈发兴, pp. 73-74. (Wu W F.2017. Cloning and expression analysis of malate transporter in plum fruit and analysis of the correlation of organic acids[D]. Thesis for M.S., Fujian Agriculture and Forestry University, Supervisor: Chen F X, pp. 73-74.) [10] 续晨, 贲爱玲, 蔡晓宁. 2010. 蝴蝶兰叶绿体基因组密码子使用的相关分析[J]. 分子植物育种, 08(5): 945-950. (Xu C, Ben A L, Cai X N.2010. Analysis of synonymous codon usage in chloroplast genome of Phalaenopsis aphrodite subsp. formosana[J]. Molecular Plant Breeding, 08(5): 945-950.) [11] De Angeli A, Baetz U, Francisco R, et al.2013a. The vacuolar channel VvALMT9 mediates malate and tartrate accumulation in berries of Vitis vinifera[J]. Planta, 238(2): 283-291. [12] Bulmer M.1991. The selection-mutation-drift theory of synonymous codon usage[J]. Genetics, 129(3): 897-907. [13] Das S, Paul S, Dutta C.2006. Synonymous codon usage in adenoviruses: Influence of mutation, selection and protein hydropathy[J]. Virus Research, 117(2): 227-236. [14] De Angeli A, Zhang J, Meyer S, et al.2013b. AtALMT9 is a malate-activated vacuolar chloride channel required for stomatal opening in Arabidopsis[J]. Nature Communications, 4:1804. [15] Emmerlich V, Linka N, Reinhold T, et al.2003. The plant homolog to the human sodium/dicarboxylic cotransporter is the vacuolar malate carrier[J]. Proceedings of the National Academy of Sciences of the USA, 100(19): 11122-11126. [16] Eisenach C, Baetz U, Huck N V, et al.2017. ABA-induced stomatal closure involves ALMT4, a phosphorylation-dependent vacuolar anion channel of Arabidopsis[J]. The Plant Cell, 29(10): 2552-2569. [17] Gupta S K, Bhattacharyya T K, Ghosh T C.2004. Synonymous codon usage in Lactococcus lactis: Mutational bias versus translational selection[J]. Journal of Biomolecular Structure & Dynamics, 21(4): 527-535. [18] Gustafsson C, Govindarajan S, Minshull J.2004. Codon bias and heterologous protein expression[J]. Trends in Biotechnology, 22(7): 346-353. [19] Kovermann P, Meyer S, Hortensteiner S, et al.2007. The Arabidopsis vacuolar malate channel is a member of the ALMT family[J]. Plant Journal, 52(6): 1169-1180. [20] Li P, Wu W W, Chen F X, et al.2015. Prunus salicina 'crown', a yellow-fruited chinese plum[J]. Hortscience, 50(12): 1822-1824. [21] Liu Q, Dou S, Ji Z, et al.2005. Synonymous codon usage and gene function are strongly related in Oryza sativa[J]. Biosystems, 80(2): 123-131. [22] Murray E E, Lotzer J, Eberle M.1989. Codon usage in plant genes[J]. Nucleic Acids Research, 17(2): 477. [23] Novoa E M, Pavoneternod M, Pan T, et al.2012. A Role for tRNA modifications in genome structure and codon usage[J]. Cell, 149(1): 202-213. [24] Park S, Pack S P, Lee J.2012. Expression of codon-optimized phosphoenolpyruvate carboxylase gene from Glaciecola sp. HTCC2999 in Escherichia coli and its application for C4 chemical production[J]. Applied Biochemistry and Biotechnology, 167(7): 1845-1853. [25] Pek H B, Klement M, Ang K S, et al.2015. Exploring codon context bias for synthetic gene design of a thermostable invertase in Escherichia coli[J]. Enzyme & Microbial Technology, 75-76: 57-63. [26] Perlak F J, Deaton R W, Armstrong T A, et al.1990. Insect Resistant Cotton Plants[J]. Biotechnology, 8(10): 939-943. [27] Plotkin J B, Kudla G.2011. Synonymous but not the same: The causes and consequences of codon bias[J]. Nature Reviews Genetics, 12(1): 32-42. [28] Sasaki T, Tsuchiya Y, Ariyoshi M, et al.2016. Two members of the aluminum-activated malate transporter family, SlALMT4 and SlALMT5, are expressed during fruit development, and the overexpression of SlALMT5 alters organic acid contents in seeds in tomato (Solanum lycopersicum)[J]. Plant & Cell Physiology, 57(11): 2367. [29] Sau K, Gupta S K, Sau S, et al.2006. Factors influencing synonymous codon and amino acid usage biases in Mimivirus[J]. Biosystems, 85(2): 107-113. [30] Sharp P M, Li W H.1986. An evolutionary perspective on synonymous codon usage in unicellular organisms[J]. Journal of Molecular Evolution, 24(1-2): 28. [31] Sharp P M, Li W H.1987. The codon adaptation index a measure of directional synonymous codon usage bias, and its potential applications[J]. Nucleic Acids Research, 15(3): 1281-95. [32] Spatz S, Volkening J, Mullis R, et al.2013. Expression of chicken parvovirus VP2 in chicken embryo fibroblasts requires codon optimization for production of naked DNA and vectored meleagrid herpesvirus type 1 vaccines[J]. Virus Genes, 47(2): 259-267. [33] Sukhvinderpal S, Zora S, Ewalde S.2010. Sugars and organic acids in Japanese plums (Prunus salicina Lindell) as influenced by maturation, harvest date, storage temperature and period[J]. International Journal of Food Science & Technology, 44(10): 1973-1982. [34] Wei L, He J, Jia X, et al.2014. Analysis of codon usage bias of mitochondrial genome in Bombyx mori, and its relation to evolution[J]. BMC Evolutionary Biology, 14(1): 1-12. [35] Wu W F, Chen F X.2016. Malate transportation and accumulation in fruit cell[J]. Endocytobiosis and Cell Research, 27(02): 107-112. [36] Wong K S, Wang J, Tao L, et al.2002. Compositional gradients in gramineae genes[J]. Genome Research, 12(6): 851-856. [37] Wright F.1990. The 'effective number of codons' used in a gene[J]. Gene, 87(1): 23-29. [38] Yao Y X, Dong Q L, You C X, et al.2011. Expression analysis and functional characterization of apple MdVHP1 gene reveals its involvement in Na+, malate and soluble sugar accumulation[J]. Plant Physiology and Biochemistry, 49(10): 1201-1208. [39] Zelasko S, Palaria A, Das A.2013. Optimizations to achieve high-level expression of cytochrome P450 proteins using Escherichia coli expression systems[J]. Protein Expression & Purification, 92(1): 77-87. [40] Zhou H, Wang H, Huang L F, et al.2005. Heterogeneity in codon usages of sobemovirus genes[J]. Archives of Virology, 150(8): 1591-1605. [41] Zhou M, Tong C, Shi J.2007. Analysis of codon usage between different poplar species[J]. Journal of Genetics and Genomics, 34(6): 555-561. |
|
|
|