|
|
Isolation, Identification, Physicochemical Parameters and Antibacterial Characteristics of Byssochlamys sp. from Shengzhou Nane (Prunus salicina var. taoxingli) Fruit |
MO Yi-Wei1, LIN Hai-Yan1, ZHENG Meng-Qi1, WANG Hai1, YANG Guo1, WANG Wei1,2,* |
1 College of Life Science, Shaoxing University, Shaoxing 312000, China; 2 Yuanpei College, Shaoxing University, Shaoxing 312000, China |
|
|
Abstract Shengzhou Nane (Prunus salicina var. taoxingli) usually ripe in mid-July, high temperatures and frequent rains accelerate water loss, softening, microbial attack and decay during storage. The aim of this study was to investigate and identify pathogens, reduce occurrence of diseases, and isolate and identify pathogenic bacteria as well as to detect the possible host. Initially, effects of light, temperature, pH and different C and N sources on colony growth was explored, and NaHCO3 and chitosan oligosaccharide (COS) were used for antibacterial test. The results showed that the pathogen was Byssochlamys sp. (B-TXL-02), which can cause disease in a variety of fruits, including pear (Pyrus spp.), apple (Malus domestica), peach (Prunus persica), cherry (Prunus avium), apricot (Prunus armeniaca), grape (Vitis vinifera), mango (Mangifera indica), banana (Musa spp.) and others fruits, indicating that the host had broad spectrum. Continuous illumination inhibited colony growth. Optimal factors for Byssochlamys sp. growth were temperature 30 ℃, pH 5, D-fructose and glucose for C source, beef extract and yeast extract for N source. When added into the potato dextrose agar, NaHCO3 and COS could significantly inhibit colony growth in the first 6 d and the first 12 d, respectively, by inhibiting spore germination and inhibited mycelial growth. Treated with 0.3% NaHCO3+1.6% chitosan oligosaccharide, the postharvest rot rate of fruit was significantly reduced. This study provides a practical method for prevention and control of Byssochlamys sp. for Shengzhou Nane during postharvest storage.
|
Received: 25 February 2019
|
|
Corresponding Authors:
* wangwei@usx.edu.cn
|
|
|
|
[1] 曹珍珍, 周林燕, 李淑荣, 等. 2014.壳聚糖和魔芋精粉复合涂膜对大白杏保鲜效果的影响[J]. 核农学报, 28(11): 2051-2057. (Cao Z Z, Zhou L Y, Li S R, et al.2014. Effect of combined coating treatment of chitosan and konjac powder on quality of 'Dabai' apricot during cold storage[J]. Journal of Nuclear Agricultural Sciences, 28(11): 2051-2057.) [2] 陈长卿, 张博, 杨丽娜, 等. 2012. 越橘灰霉病病原菌鉴定及其生物学特性研究[J]. 吉林农业大学学报, 34(5): 511-516. (Chen C Q, Zhang B, Yang L N, et al.2012. Identification and biological characteristics of pathogenic bacteria of blueberry gray mold[J]. Journal of Jilin Agricultural University, 34(5): 511-516.) [3] 郜海燕, 肖尚月, 陈杭君, 等. 2017. 蓝莓采后主要病原真菌的分离鉴定及生物学特性研究[J]. 农业机械学报,48(5): 327-334. (Gao H Y, Xiao S Y, Chen H J, et al.2017. Identification and bological characteristics of fungal pathogens in blueberry during postharvest storage[J]. Transactions of The Chinese Society of Agricultural Machinery, 48(5): 327-334.) [4] 龚魁杰, 陈利容, 祁国栋, 等. 2018. ClO2杀菌复合壳寡糖涂膜对鲜食糯玉米的保鲜效果[J].食品科学, 39(21): 279-284. (Gong K J, Chen L R, Qi G D, et al.2018. Effect of ClO2 sterilization combined with chitosan oligosaccharide coating on maintaining the quality of waxy corn[J]. Food Science, 39(21): 279-284.) [5] 何莹蓉, 林海雁, 曹宗威, 等. 2017. 不同处理对桃形李采后病原菌的防治效果[J].热带作物学报, 38(4): 734-739. (He Y R, Lin H Y, Cao Z W, et al.2017. Effects of different treatments on pathogen control efficiency in harvested Nane fruit[J]. Chinese Journal of Tropical Crops, 38(4): 734-739.) [6] 李博强, 陈勇, 徐小迪, 等. 2017. 棒曲霉素的生物合成、调控机制及其控制技术研究进展[J]. 食品安全质量检测学报, 8(9): 3283-3288. (Li B Q, Chen Y, Xu X D, et al.2017. Research progress on biosynthesis, regulating mechanisms and control technologies of patulin[J]. Journal of Food Safety and Quality, 8(9): 3283-3288.) [7] 李驰, 刘艳, 梁燕, 等. 2019. 马铃薯疮痂病病原菌鉴定及其生物学特性[J]. 农业生物技术学报, 27(5): 897-907. (Li C, Liu Y, Liang Y, et al.Identification and biological characteristics of pathogens in potato common scab[J]. Journal of Agricultural Biotechnology, 27(5): 897-907.) [8] 刘瑜, 王海, 王艳丹, 等. 2017. 枸杞鲜果霉变菌种分离鉴定及其生物学特性[J]. 农业工程学报, 33(增刊): 3740-380. (Liu Y, Wang H, Wang Y D, et al.2017. Isolation, identification and biological characteristics of pathogenic fungus from Chinese wolfberry fruit[J]. Transactions of the Chinese Society of Agricultural Engineering, 33(Supp.1): 374-380.) [9] 莫亿伟, 张付康, 杨国, 等. 2017. 1-MCP和壳聚糖复合处理提高嵊州桃形李采后保鲜效果[J]. 果树学报, 34(1): 75-83. (Mo Y W, Zhang F K, Yang G, et al.2017. Effects of combined treatment of 1-MCP and chitosan coating on the storability of Shengzhou Nane (Prunus salicina var. taoxingli) fruit[J]. Journal of Fruit Science, 34(1): 75-83.) [10] 潘寒姁, 谢芳, 王姣, 等. 2015. 碳酸氢钠与抗坏血酸复合处理对鲜切苹果褐变和品质的影响[J]. 中国农业大学学报, 20(2): 114-123. (Pan H, Xie F, Wang J, et al.2015. Effect of the treatment of sodium bicarbonate combined with ascorbic acid on browning and quality of fresh-cut apples[J]. Journal of China Agricultrual University, 34(1): 75-83.) [11] 唐静, 周立刚, 曹晓冬, 等. 2006. 植物提取物、碳酸钠和碳酸氢钠室内对杨树溃疡病菌生长的抑制作用[J]. 植物病理学报, 36(5): 446-453. (Tang J, Zhou L G, Cao X D, et al.2006. Inhibition of plant extracts, sodium carbonate and sodium bicarbonate on the pathogen of poplar canker Botryosphaeria dothidea[J]. Act Phytopathologica Sinica, 36(5): 446-453.) [12] 汪莹, 张弦, 周佳一, 等. 2015. 五种抑菌物质对采后病原菌根霉菌生长发育的影响[J], 农业生物技术学报, 23(1): 107-117. (Wang Y, Zhang X, Zhou J L, et al.2015. Inhibitory effects of five antifungal substances on development of postharvest pathogen Rhizopus oryzae[J]. 农业生物技术学报, 23(1): 107-117.) [13] 魏新林, 夏文水. 2004. 甲壳低聚糖的生理活性研究进展[J]. 中国药理学通报, 19(6): 614-617. (Wei X L, Xia W S.2004. Research development of chitooligosaccharides physiological activities[J]. Chinese Pharmacological Bulletin, 19(6): 614-617.) [14] 习柳, 田世平. 2005. 酵母拮抗菌与碳酸氢钠配合对番茄果实采后病害的防治效果研究[J]. 中国农业科学, 38(5): 950-955. (Xi L, Tian S P.2005. Control of postharvest diseases of tomato fruit by combining antagonistic yeast with sodium bicarbonate[J]. Scientia Agrciultura Sinica, 38(5): 950-955.) [15] 闫佳琪, 张忆楠, 赵玉梅, 等. 2015. 壳寡糖控制果蔬采后病害及诱导抗病性研究进展[J]. 食品科学, 36(21): 268-272. (Yan J Q, Zhang Y N, Zhan Y M, et al.2015. Progress of research on control of postharvest diseases of fruits and vegetables and induction of disease resistance with oligochitosan[J]. Food Science, 36(21): 268-272.) [16] 臧威, 孙翔, 孙剑秋, 等. 2014. 南方红豆杉内生真菌的多样性与群落结构[J]. 应用生态学报, 25(7): 2071-2078. (Cang W, Sun X, Sun J Q, et al.2014. Diversity and community structure of endophytic fungi from Taxus chinensis var. mairei[J]. Chinese Journal of Applied Ecology, 25(7): 2071-2078.) [17] 赵亚婷, 刘豆豆, 朱璇, 等. 2015. 采前壳寡糖处理对杏果实黑斑病的抗性诱导[J].西北植物学报, 35(7): 1409-1414. (Zhao Y T, Liu D D, Zhu X, et al.2015.Resistance induction of preharvest chtosan oligosaccharide treatment to black spot in apricots fruits[J]. Acta Botanica Boreali-Occidentalia Sinica, 35(7): 1409-1414.) [18] 赵一洁, 唐毅, 王威浩, 等. 2017. 蜜橘酸腐病病原菌的分离鉴定以及不同抑菌剂处理对其控制效果[J]. 食品科学, 38(7): 230-237. (Zhao Y J, Tang Y, Wang W H, et al.2017. Isolation and identification of sour rot pathogen of satsuma mandarin and inhibitory effects of three antifungal substances on it[J]. Food Science, 38(7): 230-237.) [19] 朱迎迎, 高兆银, 李敏, 等. 2016. 火龙果镰刀菌果腐病病原菌鉴定及生物学特性研究[J]. 热带作物学报, 37(1): 164-171. (Zhu Y Y, Gao Z Y, Li M, et al.2016. Identification and biological characteristics of dragon fruit (Hylocereus undatus Britt) Fusarium rot pathogen[J]. Chinese Journal of Tropical Crops, 37(1): 164-171.) [20] Barad S, Sela N, Kumar D, et al.2016. Fungal and host transcriptome analysis of pH-regulated genes during colonization of apple fruits by Penicillium expansum[J]. BMC Genomics, 17(4): 330-356. [21] Cao B, Li H, Tian S, et al.2012. Boron improves the biocontrol activity of Cryptococcus laurentii against Penicillium expansum in jujube fruit[J]. Postharvest Biology and Technology, 68(1): 16-21. [22] de Clercq N, Vlaemynck G, Van Pamel E, et al.2016. Isoepoxydon dehydrogenase (idh) gene expression in relation to patulinproduction by Penicillium expansum under different temperature and atmosphere[J]. International Journal of Food Microbiology, 220(4): 50-57. [23] de Costa D M, Gunawardhana H.2012. Effects of sodium bicarbonate on pathogenicity of Colletotrichum musae and potential for controlling postharvest diseases of banana[J]. Postharvest Biology and Technology, 68(2): 54-63. [24] de Pasquale D A, Montville T J.1990. Mechanism by which ammonium bicarbonate and ammonium sulfate inhibit mycotoxigenic fungi[J]. Applied and Environmental Microbiology, 56(12): 3711-3717. [25] Evelyn F V, SilvaM.2014. Inactivation of Byssochlamys nivea ascospores in strawberry puree by high pressure, power ultrasound and thermal processing[J]. International Journal of Food Microbiology, 214(2): 129-138. [26] Fallanaj F, Ippolito A, Ligorio A, et al.2016. Electrolyzed sodium bicarbonate inhibits Penicillium digitatum and induces defense responses against green mould in citrus fruit[J]. Postharvest Biology and Technology, 115(12): 18-29. [27] Kotzekidou P.1997. Heat resistance of Byssochlamys nivea, Byssochlamys fulva and Neosartorya fischeri isolated from canned tomato paste[J]. Journal of Food Science, 62(2): 410-412. [28] Lai T, Bai X, Wang Y, et al.2015. Inhibitory effect of exogenous sodium bicarbonate on development and pathogenicity of postharvest disease Penicillium expansum[J]. Scientia Horticulturae, 187(3): 108-114. [29] Li B Q, Zong Y Y, Du Z L, et al.2015. Genomic characterization reveals insights into patulin biosynthesis and pathogenicity in Penicillium Species[J]. Molecular Plant-Microbe Interactions, 28(6): 635-647. [30] Liang G, Wang H, Zhang Y, et al.2017. Improving preservation effects of Taiwan jujube fruits by using chitosan coating combined with ascorbic acid during postharvest period[J]. Transactions of the Chinese Society of Agricultural Engineering, 33(17): 304-312. [31] Ma L, Cao J, Xu L, et al.2014. Effects of 1-methylcyclopropene in combination with chitosan oligosaccharides on post-harvest quality of aprium fruits[J]. Scientia Horticulturae, 179(9): 301-305. [32] Palou L, Smilanick J L, Usall J, et al.2001. Control of postharvest blue and green molds of oranges by hot water, sodium carbonate, and sodium bicarbonate[J]. Plant Disease, 85(4): 371-376. [33] Panagou E Z, Chelonas S, Chatzipavlidis I, et al.2010. Modelling the effect of temperature and water activity on the growth rate and growth / no growth interface of Byssochlamys fulva and Byssochlamys nivea[J]. Food Microbiology, 27(5): 618-27. [34] Plaza P, Usall J, Torres R, et al.2004. The use of sodium carbonate to improve curing treatments against green and blue moulds on citrus fruits[J]. Pest Management Science, 60(8): 815-821. [35] Rice S L, Beuchat L R.1978. Polygalacturonase, biomass and ascospore production by Byssochlamys fulva.Ⅱ. Effects of sugars found in fruits[J]. Mycopathologia, 63(2): 89-93. [36] Sant'Ana A S, Rosenthal A, Massaguer P R.2009. Heat resistance and the effects of continuous pasteurization on the inactivation of Byssochlamys fulva ascospores in clarified apple juice[J]. Journal of Applied Microbiology, 107(1): 197-209. [37] Sant'Ana A S, Simas R C, Almeida C A A, et al.2010. Influence of package, type of apple juice and temperature on the production of patulin by Byssochlamys nivea and Byssochlamys fulva[J]. International Journal of Food Microbiology, 142(1-2): 156-163. [38] Smilanick J L, Margosan D A, Mlikota F, et al.1999. Control of citrus green mold by carbonate and bicarbonate salts and the influence of commercial postharvest practices on their efficacy[J]. Plant Disease, 83(2): 139-145. [39] van der Riet W B, Botha A, Pinches S E.1989. The effect of dimethyldicarbonate on vegetative growth and ascospores of Byssochlamys fulva suspended in apple juice and strawberry nectar[J]. International Journal of Food Microbiology, 8(2): 95-102. [40] Wan Y K, Tian S P, Qin G Z.2003. Enhancement of biocontrol activity of yeasts by adding sodium bicarbonate or ammonium molybdate to control postharvest disease of jujube fruits[J]. Letter in Applied Microbiology, 37(3): 249-253. [41] Wang F, Feng G, Chen K.2009. Defense responses of harvested tomato fruit to burdock fructooligosaccharide, a novel potential elicitor[J]. Postharvest Biology and Technology, 52(1): 110-116. [42] Yao H J, Tian S P, Wang Y S.2004. Sodium bicarbonate enhances biocontrol efficacy of yeasts on fungal spoilage of pears[J]. International Journal of Food Microbiology, 93(3): 297-304. [43] Zong Y, Li B, Tian S.2015. Effects of carbon, nitrogen and ambient pH on patulin production and related gene expression in Penicillium expansum[J]. International Journal of Food Microbiology, 206(5): 102-108. |
|
|
|