|
|
Research Advance in Seedless Fruits Inducted by Plant Growth Regulators |
LI Hui, SHAMA Shi-Ti, HU Jun-Chao, YUAN Ming* |
College of Life Science, Sichuan Agricultural University, Ya'an 625014, China |
|
|
Abstract Seedless fruits are especially appreciated by consumers because of their high edible rate, good taste and their convenience. Seedless is a desirable economic trait for fruits and an important index in breeding work. Seedless fruits can be obtained through parthenocarpy which the ovary develops without fertilization and by stenospermocarpy which the ovule is fertilized but the seed is aborted for lots of reasons. In this paper, we reviewed the potential roles and underlying mechanisms of auxin, gibberellin, cytokinin and ethylene, and analyzed the crosstalk of different hormones during the set and development of fruits.
|
Received: 09 January 2019
|
|
Corresponding Authors:
yuanming@sicau.edu.cn
|
|
|
|
[1] 李东波, 黎晓峰, 黄凤珠, 等. 2013. 荔枝胚胎发育不同品种诱导焦核的研究[J]. 中国农学通报, 29(16): 115-118. (Li D B, Li X F, Huang F Z, et al.2013. Studies on the induction of stenospermocarpy in Litchi of different embryonic development cultivars[J]. Chinese Agricultural Science Bulletin, 29(16): 115-118.) [2] 王飞, 王跃进, 万怡震, 等. 2004. 无核葡萄与中国野生葡萄杂种胚败育的某些生理生化变化[J]. 园艺学报, 34(5): 651-653. (Wang F, Wang Y J, Wang Y Z, et al.2004. Some physiological and biochemical changes of embryo abortion in hybrids of seedless grapes and Chinese wild grapes[J]. Acta Horticulturae Sinica, 34(5): 651-653.) [3] Ampomah-Dwamena C, Morris A B, Sutherland P, et al.2002. Down-regulation of TM29, a tomato SEPALLATA homolog, causes parthenocarpic fruit development and floral reversion[J]. Plant Physiology, 130(2): 605-617. [4] Barbosa I C R, Hammes U Z, Schwechheimer C.2018. Activation and polarity control of PIN-FORMED auxin transporters by phosphorylation[J]. Trends in Plant Science, 23(6): 997-1000. [5] Carmi N, Salts Y, Dedicova B, et al.2003. Induction of parthenocarpy in tomato via specific expression of the rolB gene in the ovary[J]. Planta, 217(5): 726-735. [6] Carrera E, Ruiz-Rivero O, Peres L E, et al.2012. Characterization of the procera tomato mutant shows novel functions of the SlDELLA protein in the control of flower morphology, cell division and expansion, and the auxin-signaling pathway during fruit-set and development[J]. Plant Physiology, 160(3): 1581-1596. [7] Chai L J, Chai P, Chen S W, et al.2018. Transcriptome analysis unravels spatiotemporal modulation of phytohormone-pathway expression underlying gibberellin-induced parthenocarpic fruit set in San Pedro-type fig (Ficus carica L.)[J]. BMC Plant Biology, 18(1): 100. [8] Chen C X, Chen J, Singer S D, et al.2015. Gibberellin-induced changes in the transcriptome of grapevine (Vitis labrusca×V. vinifera) cv. Kyoho flowers[J]. BMC Genomics, 16(1): 2-16. [9] Chen C X, Xu X Z, Singer S D, et al.2013. Effect of GA3 treatment on seed development and seed-related gene expression in grape[J]. PLOS ONE, 8(11): e80044. [10] de Jong M, Mariani C, Vriezen W H.2009. The role of auxin and gibberellin in tomato fruit set[J]. Journal of Experimental Botany, 60(5): 1523-1532. [11] de Jong M, Wolters-Arts M, García-Martínez J L, et al.2011. The solanum lycopersicum AUXIN RESPONSE FACTOR 7 (SlARF7) mediates cross-talk between auxin and gibberellin signalling during tomato fruit set and development[J]. Journal of Experimental Botany, 62(2): 617-626. [12] Ding J G, Chen B W, Xia X J, et al.2013. Cytokinin-induced parthenocarpic fruit development in tomato is partly dependent on enhanced gibberellin and auxin biosynthesis[J]. PLOS ONE, 8(7): e70080. [13] Du L M, Bao C L, Hu T H, et al.2016. SmARF8, a transcription factor involved in parthenocarpy in eggplant[J]. Molecular Genetics and Genomics, 291(1): 93-105. [14] Fuentes S, Ljung K, Sorefan K, et al.2012. Fruit growth in Arabidopsis occurs via DELLA-dependent and DELLA-independent gibberellin responses[J]. The Plant Cell, 24(10): 3982-3996. [15] García-Hurtado N, Carrera E, Ruiz-Rivero O.2012. The characterization of transgenic tomato overexpressing gibberellin 20-oxidase reveals induction of parthenocarpic fruit growth, higher yield, and alteration of the gibberellin biosynthetic pathway[J]. Journal of Experimental Botany, 63(16): 5803-5813. [16] Goetz M, Hooper L C, Johnson S D, et al.2007. Expression of aberrant forms of AUXIN RESPONSE FACTOR8 stimulates parthenocarpy in Arabidopsis and tomato[J]. Plant Physiology, 145(2): 351-366. [17] Goetz M, Vivian-Smith A, Johnson S D, et al.2006. AUXIN RESPONSE FACTOR8 is a negative regulator of fruit initiation in Arabidopsis[J]. Plant Cell, 18(8): 1873-1886. [18] Gustafson F G.1936. Inducement of fruit development by growth-promoting chemicals[J]. Proceedings of the National Academy of Sciences of the USA, 22(11): 628-636. [19] Hayata Y, Niimi Y, Iwasaki N.1995. Synthetic cytokinin-1-(2=chloro=4=pyridyl)-3-phenylurea (CPPU)-promotes fruit set and induces parthenocarpy in watermelon[J]. Journal of the American Horticultural Society, 120: 997-1000. [20] Hu J H, Israeli A, Ori N, et al.2018. The interaction between DELLA and ARF/IAA mediates crosstalk between gibberellin and auxin signaling to control fruit initiation in tomato[J]. Plant Cell, 30: 1710-1728. [21] Ingrosso I, Bonsegna S, Domenico S D, et al.2011. Over-expression of a grape stilbene synthase gene in tomato induces parthenocarpy and causes abnormal pollen development[J]. Plant Physiology & Biochemistry, 49(10): 1092-1099. [22] Jung C J, Hur Y Y, Yu H J, et al.2014. Gibberellin application at pre-bloom in grapevines down-regulates the expressions of VvIAA9 and VvARF7, negative regulators of fruit set initiation, during parthenocarpic fruit development[J]. PLOS ONE, 9(4): e95634. [23] Klap C, Yeshayahou E, Barg A M, et al.2017. Tomato facultative parthenocarpy results from SlAGAMOUS-LIKE 6 loss of function[J]. Plant Biotechnology Journal, 15(5): 634-647. [24] Li J, Wu Z, Cui L, et al.2014. Transcriptome comparison of global distinctive features between pollination and parthenocarpic fruit set reveals transcriptional phytohormone cross-talk in cucumber (Cucumis sativus L.)[J]. Plant and Cell Physiology, 55(7): 1325-1342. [25] Li Y, Yu J Q, Ye Q J, et al.2003. Expression of CycD3 is transiently increased by pollination and N-(2-chloro-4-pyridyl)-N′-phenylurea in ovaries of Lagenaria leucantha[J]. Journal of Experimental Botany, 54(385): 1245-1251. [26] Lin Z F, Arciga-Reyes L, Zhong S, et al.2008. SlTPR1, a tomato tetratricopeptide repeat protein, interacts with the ethylene receptors NR and LeETR1, modulating ethylene and auxin responses and development[J]. International Review of Research in Mental Retardation, 59(15): 4271-4287. [27] Liu C, Yue R R, Wang H B, et al.2018a. 2,4-D-induced parthenocarpy in pear is mediated by enhancement of GA4 biosynthesis[J]. Physiologia Plantarum, DOI: 10.1111/ppl.12835 [28] Liu L L, Wang Z G, Liu J L, et al.2018b. Histological, hormonal and transcriptomic reveal the changes upon gibberellin-induced parthenocarpy in pear fruit[J]. Horticulture Research, 5(1): 1. [29] Liu S, Zhang Y W, Feng Q S, et al.2018c. Tomato AUXIN RESPONSE FACTOR 5 regulates fruit set and development via the mediation of auxin and gibberellin signaling[J]. Scientific Reports, 8(1): 2971. [30] Liu X, Xu T, Dong X F, et al.2016. The role of gibberellins and auxin on the tomato cell layers in pericarp via the expression of ARFs regulated by miRNAs in fruit set[J]. Acta Physiologiae Plantarum, 38(3): 77. [31] Mariotti L, Picciarelli P, Lombardi L, et al.2011. Fruit-set and early fruit growth in tomato are associated with increases in indoleacetic acid, cytokinin, and bioactive gibberellin contents[J]. Journal of Plant Growth Regulation, 30(4): 405-415. [32] Martí C, Orzáez D, Ellul P, et al.2007. Silencing of DELLA induces facultative parthenocarpy in tomato fruits[J]. The Plant Journal, 52(5): 865-876. [33] Martínez-Bello L L, Moritz T, López-Díaz I, 2015. Silencing C19-GA2-oxidases induces parthenocarpic development and inhibits lateral branching in tomato plants[J]. Journal of Experimental Botany, 66(19): 5897-5910. [34] Martínez C, Manzano S, Megías Z, et al.2013. Involvement of ethylene biosynthesis and signalling in fruit set and early fruit development in zucchini squash (Cucurbita pepo L.)[J]. BMC Plant Biology, 13(1): 139. [35] Matsuo S, Kikuchi K, Fukuda M, et al.2012. Roles and regulation of cytokinins in tomato fruit development[J]. Journal of Experimental Botany, 63(15): 5569-5579. [36] Mazzucato A, Cellini F, Bouzayen M, et al.2015. A TILLING allele of the tomato Aux/IAA9 gene offers new insights into fruit set mechanisms and perspectives for breeding seedless tomatoes[J]. Molecular Breeding, 35(1): 22. [37] Mesejo C, Muñoz-Fambuena N, Reig C, et al.2014. Cell division interference in newly fertilized ovules induces stenospermocarpy in cross-pollinated citrus fruit[J]. Plant Science, 225: 86-94. [38] Mezzetti B, Landi L, Pandolfini T, et al.2004. The defH9-iaaM auxin-synthesizing gene increases plant fecundity and fruit production in strawberry and raspberry[J]. BMC Biotechnology, 4(1): 4-4. [39] Mezzetti B, Landi L, Scortichini L, et al.2002. Genetic engineering of parthenocarpic fruit development in strawberry[J]. Acta Horticulturae, 567: 101-104. [40] Mignolli F, Vidoz M L, Mariotti L, et al.2015. Induction of gibberellin 20-oxidases and repression of gibberellin 2β-oxidases in unfertilized ovaries of entire tomato mutant, leads to accumulation of active gibberellins and parthenocarpic fruit formation[J]. Plant Growth Regulation, 75(2): 415-425. [41] Mignolli F, Vidoz M L, Picciarelli P, et al.2018. Gibberellins modulate auxin responses during tomato (Solanum lycopersicum L.) fruit development[J]. Physiologia Plantarum. [42] Molesini B, Pandolfini T, Rotino G L, et al.2009a. Aucsia gene silencing causes parthenocarpic fruit development in tomato[J]. Plant Physiology, 149(1): 534-548. [43] Molesini B, Rotino G L, Spena A, et al.2009b. Expression profile analysis of early fruit development in iaaM-parthenocarpic tomato plants[J]. BMC Research Notes, 2(1): 143. [44] Mounet F, Moing A, Kowalczyk M, et al.2012. Down-regulation of a single auxin efflux transport protein in tomato induces precocious fruit development[J]. Journal of Experimental Botany, 63(13): 4901-4917. [45] Niu Q F, Wang T, Li J Z, et al.2015. Effects of exogenous application of GA4+7 and N-(2-chloro-4-pyridyl)-N′-phenylurea on induced parthenocarpy and fruit quality in Pyrus pyrifolia 'Cuiguan'[J]. Plant Growth Regulation, 76(3): 251-258. [46] Okamoto G, Miura K.2005. Effect of pre-bloom GA application on pollen tube growth in cv. delaware grape pistils[J]. Vitis Journal of Grapevine Research, 44(4): 157-160. [47] Pandolfini T, Molesini B, Spena A.2007. Molecular dissection of the role of auxin in fruit initiation[J]. Trends in Plant Science, 12(8): 1360-1383. [48] Qian C L, Ren N N, Wang J Y, et al.2018. Effects of exogenous application of CPPU, NAA and GA4+7 on parthenocarpy and fruit quality in cucumber (Cucumis sativus L.)[J]. Food Chemistry, 243: 410-413. [49] Ren Z X, Wang X M.2016. SlTIR1 is involved in crosstalk of phytohormones, regulates auxin-induced root growth and stimulates stenospermocarpic fruit formation in tomato[J]. Plant Science, 253: 13-20. [50] Rodrigo M J, García-Martínez J L.1998. Hormonal control of parthenocarpic ovary growth by the apical shoot in pea[J]. Plant Physiology, 116(2): 511-518. [51] Rojas-Gracia P, Roque E, Mónica M, et al.2017. The parthenocarpic hydra mutant reveals a new function for a SPOROCYTELESS-like gene in the control of fruit set in tomato[J]. New Phytologist, 214(3): 1198. [52] Ruan Y L, Patrick J W, Mondher B, et al.2012. Molecular regulation of seed and fruit set[J]. Trends in Plant Science, 17(11): 656-665. [53] Schijlen E G W M, De Vos C H R, Martens S, et al.2007. RNA interference silencing of chalcone synthase, the first step in the flavonoid biosynthesis pathway leads to parthenocarpic tomato fruits[J]. Plant Physiology, 144(3): 1520-1530. [54] Serrani J C, Carrera E, Ruiz-Rivero O, et al.2010. Inhibition of auxin transport from the ovary or from the apical shoot induces parthenocarpic fruit-set in tomato mediated by gibberellins[J]. Plant Physiology, 153(2): 851-862. [55] Serrani J C, Fos M, Atarés A, et al.2007. Effect of gibberellin and auxin on parthenocarpic fruit growth induction in the cv 'Micro-Tom' of tomato[J]. Journal of Plant Growth Regulation, 26(3): 211-221. [56] Serrani J C, Ruiz-Rivero O, Fos M, et al.2008. Auxin-induced fruit set in tomato is mediated in part by gibberellin[J]. The Plant Journal, 56(6): 922-934. [57] Shinozaki Y, Hao S, Kojima M, et al.2015. Ethylene suppresses tomato fruit set through modification of gibberellin metabolism[J]. Plant Journal, 83(2): 237-251. [58] Sotelo-Silveira M, Marsch-Martínez N, De Folter S.2014. Unraveling the signal scenario of fruit set[J]. Planta, 239(6): 1147-1158. [59] Stepanova A N, Robertson-Hoyt J, Yun J G, et al.2008. TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development[J]. Cell, 133(1): 177-191. [60] Tang N, Deng W, Hu G, et al.2015. Transcriptome profiling reveals the regulatory mechanism underlying pollination dependent and parthenocarpic fruit set mainly mediated by auxin and gibberellin[J]. PLOS ONE, 10(4): e0125355. [61] Takisawa R, Nakazaki T, Nunome T, et al.2018. The parthenocarpic gene pat-k is generated by a natural mutation of SlAGL6 affecting fruit development in tomato (Solanum lycopersicum L.)[J]. BMC Plant Biology, 18(1): 72. [62] Varoquaux F, Blanvillain R, Delseny M, et al.2000. Less is better: New approaches for seedless fruit production[J]. 18(6): 233-242. [63] Vriezen W H, Feron R, Maretto F, et al.2010. Changes in tomato ovary transcriptome demonstrate complex hormonal regulation of fruit set[J]. New Phytologist, 177(1): 60-76. [64] Wang H, Jones B, Li Z G, et al.2005. The tomato Aux/IAA transcription factor IAA9 is involved in fruit development and leaf morphogenesis[J]. Plant Cell, 17(10): 2676-2692. [65] Xu J, Li J, Cui L, et al.2017. New insights into the roles of cucumber TIR1 homologs and miR393 in regulating fruit/seed set development and leaf morphogenesis[J]. BMC Plant Biology, 17(1): 130. [66] Yao J L, Dong Y H, Morris B A M.2001. Parthenocarpic apple fruit production conferred by transposon insertion mutations in a MADS-box transcription factor[J]. Proceedings of the National Academy of Sciences of the USA, 98(3): 1306-1311. [67] Yin Z M, Malinowski R, Ziólkowska A, et al.2006. The DefH9-iaaM-containing construct efficiently induces parthenocarpy in cucumber[J]. Cellular & Molecular Biology Letters, 11(2): 279-290. |
|
|
|