|
|
Degradation Characteristics of Corn (Zea mays) Straw by Bacillus amyloliquefaciens |
YANG Juan, WANG Yan, CAI Yun-Hua, LI Hong-Ya*, LI Shu-Na, WANG Shu-Xiang, WANG Quan |
College of Life Science, Hebei Agricultural University, Heibei Baoding, 071000, China |
|
|
Abstract Degradation of corn (Zea mays) stover by microbial fermentation technology is of great significance for realizing the resource utilization of cellulosic biomass. In this study, based on the isolation of a cellulose-degrading strain of Bacillus amyloliquefaciens MN-13 in the early stage of our research group, the cellulase activity of the strain and the degradation characteristics of corn stalk cellulose were further investigated, and while the degradation products of cellulose in stalk were analyzed by gas chromatography-mass spectrometer (GC/MS). The aim of this study is to provide basic data for the process regulation of corn stover fermentation by B. amyloliquefaciens MN-13. The results showed that B. amyloliquefaciens MN-13 could produce cellulases, in which the enzyme activity of filter paper cellulase (total cellulase) reached a maximum of 8.35 U/mL at 60 h in the cellulose-MSM (mineral salt medium) fermentation culture. In the fermentation process of corn stalk cultivated with strain MN-13, the hemicellulase activity reached a maximum of 60.46 U/g at 10th day, and the cellulase activity reached a maximum of 45.40 U/g at 14th day of fermentation. The content of soluble sugar reached the highest level and tended to be stable after fermentation for 19 d. After 24 d of fermentation, the damaged structure of corn stalk was obviously observed, and the degradation rate of cellulose and hemicellulose reaches to 27.12% and 40.6%, respectively. The degradation products mainly contained monosaccharides, alcohols and short-chain fatty acids. The results of this study provide an experimental basis for the study of the process of fermenting corn stalks by Bacillus amyloliquefaciens.
|
Received: 14 September 2018
|
|
Corresponding Authors:
* lihy77@sina.com
|
|
|
|
[1] 陈丽燕, 张光祥, 黄春萍, 等. 2011. 两株高产纤维素酶细菌的筛选、鉴定及酶学特性[J]. 微生物学通报, 20,38(4): 531-538. (Chen L Y, Zhang G X, Huang C P, et al.2011. Isolation, identification and enzymatic characteristics of cellulose-producing strains with high cellulase activity[J]. Microbiology China, 20,38(4): 531-538.) [2] 刁治民, 张雄伟, 熊亚, 等. 2006. 微生物纤维素酶在饲料工业中的生产现状及应用[J].青海草业, 15(3) :15-20. (Diao Z M, Zhang X W, Xiong Y, et al.2006. The research on the productive status and applied of microbial cellulase[J]. Qinghai prataculture, 15(3) :15-20.) [3] 李春梅, 何江波, 陈惠, 等. 2011. 高产中性纤维素酶的巨大芽胞杆菌基因工程菌发酵工艺条件优化. 农业生物技术学报, 19(3): 557-564. (Optimization of fermentation conditions for producing neutral cellulase from a high¬yield bacillus megaterium genetic engineering bacteria[J]. Journal of Agricultural Biotechnology, 19(3): 557-564.) [4] 李丹丹, 周杰, 刘文红. 2011. 响应面优化玉米秸秆纤维素提取工艺[J]. 安徽农业科学, 39(30): 18781-18783. ( Li D D, Zhou J, Liu W H.2011. Optimization on extraction technology for cellulose from corn stalk by using response surface method[J]. Journal of Anhui Agricultural Sciences, 39(30): 18781-18783.) [5] 李红亚, 李术娜, 王树香, 等. 2015. 解淀粉芽孢杆菌MN-8对玉米秸秆木质纤维素的降解[J]. 应用生态学报, 26(5) :1404-1410. (Li H Y, Li S N, Wang S X, et al.2015. Degradation of lignocellulose in the corn straw by Bacillus amyloliquefaciens MN-8[J]. Chinese Journal of Applied Ecology, 26(5) :1404-1410.) [6] 李珊珊, 严艳, 王志刚. 2014. 稻草纤维素提取工艺研究[J]. 黑龙江畜牧兽医, (15) :123-125. (Li S S, Yan Y, Wang Z G. 2014. Study on the extraction process of cellulose from rice straw[J]. Heilongjiang Animal Scienceand Veterinary Medicine, (15) :123-125.) [7] 刘国红, 刘波, 车建美, 等. 2018. 1株解淀粉芽胞杆菌的筛选及其益生特性研究[J]. 农业生物技术学报, 26(06): 1043-1055. (Liu G H, Liu B, Che J M, et al.2018. Screening of a Bacillus amyloliquefaciens strain and its probiotic characteristic[J]. Chinese journal of agricultural biotechnology, 26(06),1043-1055.) [8] 刘永生, 冯家勋, 段承杰, 等. 2003. 能降解天然纤维素的地衣芽孢杆菌GXN151的分离鉴定及其一个纤维素酶基因(cel5A)的克隆和测序分析[J]. 基因组学与应用生物学, 22(20):132-138. (Liu Y S, Feng J X, Duan C J, et al.2003. Isolation and identification of a natural cellulose degrading Bacillus licheniformis strain GXN151 and cloning and sequencing of a cellulase gene cel5A from the bacterium[J]. Genomics and Applied Biology, 22(20):132-138.) [9] 刘宇, 史同瑞, 朱丹丹, 等. 2014. 玉米秸秆利用现状及其生物发酵技术研究进展[J]. 中国畜牧杂志, 50(6) :61-64. (Liu Yu, Shi T R, Zhu D D, et al.2014. Utilization status of corn stalk and research progress of the biological fermentation technology[J]. Chinese Journal of Animal Science, 50(6) :61-64.) [10] 王海滨, 韩立荣, 冯俊涛, 等. 2015. 高效纤维素降解菌的筛选及复合菌系的构建. 农业生物技术学报, 23(4): 421-431. (Screening of highly efficient cellulose degradation microbes and construction of composite strains[J]. Journal of Agricultural Biotechnology, 23(4): 421-431.) [11] 王毅, 刘云国, 习兴梅, 等. 2008. 枯草芽孢杆菌降解木质纤维素能力及产酶研究[J]. 微生物学杂志, 28(4):1-5. (Wang Y, Liu Y G, Xi X M, et al.2008. Lignocellulose degrading ability of Bacillus subtilis and its enzyme production[J]. Journal of Microbiology, 28(4): 1-5.) [12] 韦海婷. 2018. 梅花鹿瘤胃纤维素降解菌的分离鉴定及降解特性研究[M]. 硕士学位论文, 中国农业科学院,导师: 刘晓颖, pp.1-57. (Wei H, 2018. Isolation, identification and degradation characteristics of cellulose degrading bacteria from sika deer (cervus nippon) rumen[M]. Thesis for Ph. M., Chinese Academy of Agricultural Sciences, Supervisor :Liu X Y, pp. 1-65.) [13] 吴敏峰, 耿秀蓉, 祝小, 等. 2006. 产纤维素酶芽孢杆菌的分离鉴定[J]. 饲料工业,27(20): 21-24. (Wu M F, Geng X R, Zhu X, et al.2006. Isolation and identification producing cellulase of Bacillus sp.[J]. Feed Ind, 27(20): 21-24. [14] 吴文韬, 鞠美庭, 刘金鹏, 等. 2013. 1株纤维素降解菌的分离、鉴定及对玉米秸秆的降解特性[J]. 微生物学通报, 40(4): 712-719. (Wu W T, Ju M T, Liu J P, et al.2013. Isolation, identification and corn stalk degradation characteristics of cellulose-degrading bacterial strain NH11[J]. Microbiology China, 40(4): 712-719.) [15] 肖春玲, 徐常新. 2002. 微生物纤维素酶的应用研究[J]. 微生物学杂志, 22(2): 33-35. (Xiao C L, Xu C X.2002. Application study on microbial cellulase[J]. Journal of Microbiology, 22(2): 33-35.) [16] 谢家仪, 董光军, 刘振英. 2005. 扫描电镜的微生物样品制备方法[J]. 电子显微学报, 24(4): 440-441. (Xie J Y, Dong G J, Liu Z Y.2005. Method of preparation of microbiological specimen for scanning electron microsope[J]. Electr.Microsc. Soc Chin, 24(4): 440-441.) [17] 杨冬静, 张成玲, 徐振, 等. 2017. 1株解淀粉芽孢杆菌的分离鉴定及其生物学特性研究[J]. 江西农业学报, 29(9): 69-74. (Yang D J, Zhang C L, Xu Z, et al.2017. Isolation and identification of A strain of Bacillus amyloliquefaciens and its biological characteristics[J]. Acta Agriculturae Jiangxi, 29(9): 69-74.) [18] 张立静, 李术娜, 朱宝成. 2011. 高效纤维素降解菌短小芽孢杆菌(Bacillus pumilus)T-7的筛选、鉴定及降解能力的研究. 中国农学通报, 27(7):112-118. (Screening, identification and degradation conditions of cellulose decomposing bacteria Bacillus pumilus T-7[J]. Chinese Agricultural Science Bulletin, 27(7):112-118. ) [19] Bayer E A,Lamed R.1992. The cellulose paradox pollutant par excellence and or a reclaimable natural resource[J]. Biodegradation, 3: 171-188. [20] Liu Y T, Xuan S X, Long C N, et al.2008. Screening, identifying of cellulose-decomposing strain L-06 and its enzyme-producing conditions[J]. Chinese Journal of Biotechnology, 24(6): 1112-1116. [21] Lynd L R, Wemer P J, Van W H.2002. Microbial cellulose utilization: Fundamentals and biotechnology[J]. Microbiol Mol Biol Rev, 66( 3) : 506-577. [22] Nanmori T, Watanabe T, Shinke R, et al.1990. Purification and properties of thermostable xylanase and beta-xylosidase produced by a newly isolated Bacillus stearothermophilus strain[J]. Journal of Bacteriology, 172: 6669-6672. [23] Pop O I, Westermann M, VoIkmer-Engert R, et al.2003. Sequence-specific binding of prephod to soluble TatAd indicates protein-mediated targeting of the tat export in Bacillus subtilis[J]. Journal of Biological Chemistry, 278(40): 38428-38436. [24] Wilson D B.2004. Studies of Thermobifida fusca plant cell wall degrading enzymes[J]. Chem Rec, 4: 72-82. [25] Wang Y Y, Wang Y,He X Y.1993. Nutritional ecophysiology of tremella fuciformis and its associated fungus[J]. Chinese Journal of Applied Ecology, 4(1): 59-64. [26] Zhang Y H, Lynd L R.2004. Toward an aggregated under standing of enzymatic hydrolysis of cellulose noncom plexed cellulose systems[J]. Biotechnol Bioeng, 88( 7): 797-824. |
|
|
|