|
|
Changes of Pigment Content and Expressions of the Synthetic Related Genes in Leaves of Color-leafed Cinnamomum camphora |
YU Jin-Jian1, WANG Jian-Jun2, YIN Yu-Qin1, CHENG Jian-Hong1, HUANG Hua-Hong1, *, TONG Zai-Kang1 |
1 The State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou 311300, China;
2 The Seeding Breeding Center of Ningbo Forestry Bureau, Ningbo 315012, China |
|
|
Abstract The 'Yongjin' is a color-leafed variety of Cinnamomum camphora, and it has high ornamental and economic value. Exploring the physiological and biochemical mechanism of its special leaf color formation is of great significance to the new color-leafed variety breeding of C. camphora. In this study, the leaf color, chlorophyll, carotenoid and anthocyanin contents, and photosynthetic characteristics of 'Yongjin' and wild-type were compared in April, meanwhile expression differences of 15 chlorophyll synthesis genes in 2 types were analyzed using qRT-PCR. The results showed that there was significant difference for leaf color between 'Yongjin' and wild-type in April. 'Yongjin' leaf color values were significantly lower than that of wild-type during the determination period (P<0.05), and showed an increasing trend, with the minimum of 2.757 on April 10th and the maximum of 8.163 on April 21th. The chlorophyll a, chlorophyll b and total chlorophyll contents in current-year leaves of 'Yongjin' were obviously lower than that of wild-type on April 10th, the corresponding values were only 24.9%, 42.2% and 29.7% of the wild-type. Although chlorophyll contents in 'Yongjin' were extremely significant different from the wild-type at 3 time-points (P<0.01), there was no significant difference in carotenoid and anthocyanin content between 2 types. The photo response curves of 2 types was similar, and the maximum net photosynthetic rate and light saturation point in 'Yongjin' was separately 7.44 μmol/(m2 ·s) and 396.7 μmol/(m2 ·s), which were significantly lower than that of wild-type (P<0.05). The expression patterns of genes related to chlorophyll synthesis in 'Yongjin' were obviously different form the wild-type. The expression levels of 11 genes in 'Yongjin' were significantly lower than that of wild-type on April 10th, and the expression levels of genes encoding C.camphora glutamy l-tRNA reductase (CcHEMA) and C.camphora uroporphyrinogen Ⅲ synthetase (CcHEMD) were only 38.7% and 31.7% of the wild-type. Especially, the expression levels of CcHEMD and C.camphora coproporphyrinogen Ⅲ oxidase (CcHEMF) were significantly lower than that of the wild-type during the measurement period (P<0.05), which was consistent with the relatively low chlorophyll content. In summary, the relatively low chlorophyll content of 'Yongjin' in spring was the direct cause of its special leaf color change, which was associated with the relatively weak expressions coding genes of HEMA, magnesium chelatase H subumit (CHLH), CHLI, CHLD, HEMD and HEMF. The results lay an important foundation for further dissecting the special leaf color formation mechanism of this color-leafed variety, can also provide the theoretical basis for the breeding of new varieties in C. camphora.
|
Received: 22 April 2019
|
|
Corresponding Authors:
huanghh@zafu.edu.cn
|
|
|
|
[1] 成敏敏, 陈柯伊, 朱雪玉, 等. 2018. 花叶矢竹复绿期光合特性及叶绿体结构[J]. 林业科学, 54(4): 1-10.
(Cheng M M, Chen K Y, Zhu X Y, et al.2018. Photosynthetic characteristics and chloroplast ultrastructure of Pseudosasa japonica f. akebonosuji during green-revertible albino stage[J]. Scientia Silvae Sinicae, 54(4): 1-10.)
[2] 高立旦, 童再康, 曹件生, 等. 2006. 彩叶木本植物育种研究进展[J]. 浙江林业科技, 26(4): 77-82.
(Gao L D, Tong Z K, Cao J S, et al.2006. Research progress of woody plant breeding of colorful[J]. Journal of Zhejiang Forestry Science and Technology, 26(4): 77-82.)
[3] 宫硖, 薛静, 张晓东. 2011. 植物花青素合成途径中的调控基因研究进展[J]. 生物技术进展, 1(6):381-390.
(Gong X, Xue J, Zhang X D.2011 Regulation genes in plant anthocyanin synthesis pathway[J]. Current Biotechnology, 1(6): 381-390.)
[4] 国艳梅, 顾兴芳, 张春震, 等. 2003. 黄瓜叶色突变体遗传机制的研究[J]. 园艺学报, 30(4): 409-412.
(Guo Y M, Gu X F, Zhang C Z, et al.2003. Studies on the genetic mechanism of cucumber leaf color mutants[J]. Acta Horticulturae Sinica, 30(4): 409-412.)
[5] 姜卫兵, 庄猛, 韩浩章, 等. 2005. 彩叶植物呈色机理及光合特性研究进展[J]. 园艺学报, 32(2): 352-358.
(Jiang W B, Zhuang M, Han H Z, et al.2005. Progress on color emerging mechanism and photosynthetic characteristics of colored-leaf plants[J]. Acta Horticulturae Sinica, 32(2): 352-358.)
[6] 李卫星, 杨舜博, 何智冲, 等. 2017. 植物叶色变化机制研究进展[J]. 园艺学报, 44(9): 1811-1824.
(Li W X, Yang S B, He Z C, et al.2017. Research advances in the regulatory mechanisms of leaf coloration[J]. Acta Horticulturae Sinica, 44(9): 1811-1824.)
[7] 梁广旺. 2012. 低温条件下小麦返白系中尿卟啉原Ⅲ合成酶基因的表达模式与分子特征分析[D]. 硕士学位论文, 西北农林科技大学, 导师: 徐虹, pp. 12-40.
(Liang G W.2012. Expression pattern and molecular characterization of uroporphyrinogen Ⅲ synthase gene in wheat albino at low temperature[D]. Thesis for M.S., Northwest University of Agriculture and Forestry, Supervisor: Xu H, pp. 12-40.)
[8] 罗青红, 李志军, 伍维模, 等. 2006. 胡杨、灰叶胡杨光合及叶绿素荧光特性的比较研究[J]. 西北植物学报, 1(5):983-988.
(Luo Q H, Li Z J, Wu W M, et al.2006. Comparative study of photosynthetic and chlorophyll fluorescence characteristics of Populus euphratica and P. pruinosa[J]. Acta Botanica Boreali-Occidentalia Sinica, 1(5):983-988.)
[9] 王建军. 2010. 香樟新品种'涌金'[J]. 林业科学, 46(8): 181-181.
(Wang J J.2010. New varieties of camphor 'Yongjin'[J]. Scientia Silvae Sinicae, 46(8): 181-181.)
[10] 王建军. 2015. 香樟新品种'霞光'[J]. 林业科学, 51(6): 163-163.
(Wang J J.2015. New varieties of camphor 'Xiaguang'[J]. Scientia Silvae Sinicae, 51(6): 163-163.)
[11] 王建军, 吴俊, 周丹, 等. 2009. 香樟ISSR技术体系的建立及应用评价[J]. 浙江林业科技, 29(6): 32-34.
(Wang JJ, Wu J, Zhou D, et al.2009. Establishment and application of ISSR system for Cinnanomum camphora[J]. Journal of Zhejiang Forestry Science and Technology, 29(6) 32-34.)
[12] 王平荣, 张帆涛, 高家旭, 等. 2009. 高等植物叶绿素生物合成的研究进展[J]. 西北植物学报, 29(3): 629-636.
(Wang P R, Zhang F T, Gao J X, Sun X Q, et al.2009. Advances in the study of chlorophyll biosynthesis in higher plants[J]. Acta Botanica Boreali-Occidentalia Sinica, 29(3): 629-636.)
[13] 魏晓东, 陈国祥, 徐艳丽, 等. 2008. 银杏叶片衰老过程中光合生理特性及叶绿体超微结构的变化[J]. 植物研究, 28(4): 433-437.
(Wei X D, Chen G X, Xu Y L, et al.2008. Changes in photosynthesis and ultrastructure of chloroplasts during leaf senescence of Ginkgo[J]. Bulletin of Botanical Research, 28(4): 433-437.)
[14] 肖华贵, 杨焕文, 饶勇, 等. 2013. 甘蓝型油菜黄化突变体的光合特性及叶绿素荧光参数分析[J]. 作物学报, 39(3): 520-529.
(Xiao H G, Yang H W, Rao Y, et al.2013. Photosynthetic characteristics and chlorophyll fluorescence kinetic parame-ters analyses of chlorophyll-reduced mutant in Brassica napus L.[J]. Acta Agronomica Sinica, 39(3): 520-529.)
[15] 徐昌杰, 张上隆. 2000. 植物类胡萝卜素的生物合成及其调控[J]. 植物生理学报, 36(1):64-70.
(Xu C J, Zhang S L.2000. Carotenoid biosynthesis and its regulation in plants[J]. Plant Physiology Journal, 36(1):64-70.)
[16] 张敏, 黄利斌, 周鹏, 等. 2015. 榉树秋季转色期叶色变化的生理生化[J]. 林业科学, 51(8):44-51.
(Zhang M, Huang L B, Zhou P, et al.2015. Physiological and biochemical changes in Zelkova serrata leaves during leaf color transformation in autumn[J]. Scientia Silvae Sinicae, 51(8): 44-51.)
[17] 赵杰, 周晋军, 顾建伟, 等. 2012. 光敏色素B正调控水稻叶绿素合成和叶绿体的发育[J]. 中国水稻科学, 26(6):637-642.
(Zhao J, Zhou J J, Gu J W, et al.2012. Phytochrome B positively regulates chlorophyll biosynthesis and chloroplast development in rice[J]. Chinese Journal of Rice Science, 26(6): 637-642.)
[18] 赵宇瑛, 吴广宇, 李婷婷. 2011. 红叶李不同方位枝和叶花青素含量的比较[J]. 长江大学学报(自科科学版), 8(3): 218-219.
(Zhao Y Y, Wu G Y, Li T T.2011. Comparison of anthocyanin contents in branches and leaves of Prunus cerasifera[J]. Journal of Yangtze University (Natural Science Edition), 8(3):218-219.)
[19] 朱雪云, 李建谋, 王海燕, 等. 2017. 金边黄杨和金心黄杨叶绿素合成与叶绿体结构分析[J]. 西南农业学报30(8): 1767-1771.
(Zhu X Y, Li J M, Wang H Y, et al.2017. Analysis of chlorophyll biosynthesis and chloroplast microstructure in Euonymus japonicus 'Aurea-marginatus' and Euonymus japonicus 'Aureus'[J]. Southwest China Journal of Agricultural Sciences, 30(8): 1767-1771.)
[20] 朱运钦, 曾文芳, 鲁振华, 等. 2015. '中油桃9号'及其黄肉芽变的类胡萝卜素代谢和基因表达分析[J]. 园艺学报, 42(4): 1869-1880.
(Zhu Y X, Zhen W F, Lu Z H, et al.2015. Carotenoid metabolism and gene expression analysis of 'CN9' nectarine and its yellow flesh mutant 'CN9Y'[J]. Acta Horticulturae Sinica, 42(4): 1869-1880)
[21] Anderson R, Ryser P.2015. Early autumn senescence in red maple (Acer rubrum L.) is associated with high leaf anthocyanin content[J]. Plants, 4(3): 505-522.
[22] Battersby A R, Leeper F J.1990. Biosynthesis of the pigments of life: Mechanistic studies on the conversion of porphobilinogen to uroporphyrinogen Ⅲ[J]. Chemical Reviews, 90(7): 1261-1274.
[23] Cornah J E.2003. Green or red: What stops the traffic in the tetrapyrrole pathway?[J]. Trends in Plant Science, 8(5): 24-30.
[24] Crockett N, Alefounder P R, Battersby A R, et al.1991. Uroporphyrinogen Ⅲ synthase- studies on its mechanism of action, molecular biology and biochemistry[J]. Tetrahedron, 47(31): 6003-6014.
[25] Eckhardt U, Grimm B, Hörtensteiner S.2004. Recent advances in chlorophyll biosynthesis and breakdown in higher plants[J]. Plant Molecular Biology, 56(1): 1-14.
[26] Gromoff E D V, Alawady A, Meinecke L, et al.2008. Heme, a plastid-derived regulator of nuclear gene expression in chlamydomonas[J]. Plant Cell, 20(3): 552-567.
[27] Kumar A M, Söll D.2000. Antisense HEMA1 RNA expression inhibits heme and chlorophyll biosynthesis in Arabidopsis[J]. Plant Physiology, 122(1): 49-56.
[28] Lichtenthaler H, Wellburn A.1983. Determination of total carotenoids and chlorophylls a and b of leaf in different solvents[J]. Biochemical Society Transactions, 11(5): 591-592.
[29] Liu C Y, Chang A X, Du C Y.2015. Genetic, physiological and biochemical analysis of the formation of yellow-green leaf color of burley tobacco (Nicotiana tabacum)[J]. International Journal of Agriculture & Biology, 17(4): 767-772.
[30] Luo T, Luo S, Araújo W L, et al.2013. Virus-induced gene silencing of pea CHLI and CHLD affects tetrapyrrole biosynthesis, chloroplast development and the primary metabolic network[J]. Plant Physiology and Biochemistry, 65(6): 17-26.
[31] Nagata N, Tanaka R, Satoh S, et al.2005. Identification of a vinyl reductase gene for chlorophyll synthesis in Arabidopsis thaliana and implications for the evolution of prochlorococcus species[J]. Plant Cell, 17(1): 233-240.
[32] Schmied J, Hedtke B, Grimm B.2011. Overexpression of HEMA1 encoding glutamyl-tRNA reductase[J]. Journal of Plant Physiology, 168(12): 1372-1379.
[33] Soldatova O, Apchelimov A, Radukina N, et al.2005. An Arabidopsis mutant that is resistant to the protoporphyrinogen oxidase inhibitor acifluorfen shows regulatory changes in tetrapyrrole biosynthesis[J]. Molecular Genetics & Genomics, 273(4): 311-318.
[34] Wang J J, Zhang W S, Huang H H.2015. 'Yongjin', 'Xiaguang' and 'Yuhuang': Three ornamental cultivars of Cinnamomum camphora[J]. Hortscience, 50(5): 762-764.
[35] Wei-xing L, Shun-bo Y, Zhaogeng L, et al.2018. Cytological, physiological, and transcriptomic analyses of golden leaf coloration in Ginkgo biloba L.[J]. Horticulture Research, 5(1): 12-26.
[36] Zhang H, Liu L L, Cai S S, et al.2015. A point mutation of magnesium chelatase OsCHLI gene dampens the interaction between CHLI and CHLD subunits in rice[J]. Plant Molecular Biology Reporter, 2015, 33(6): 1975-1987. |
|
|
|