|
|
Structure Characteristics of ABC Transporter Protein and the Function and Mechanism on Enhancing Resistance of Plants and Fungi to Heavy Metals |
|
|
Abstract ATP-binding cassette (ABC) transport protein is one kind of super family transporter, which exists in almost prokaryotic and eukaryotic cells, and plays an important role in physiological activities. In this paper, the structure characteristics of ABC transport protein were detailedly introduced, and divided into 8 subfamilies from A~H based on phylogenetic analysis of conservative regions. Besides, the latest researches progress of ABC transport proteins on enhancing resistance of plants and fungi to heavy metals were also introduced and interpreted. Meanwhile, the probable mechanism of it on how improving host resistance to heavy metals was summarized and analyzed from 3 points, which were vacuole sequestration, direct efflux and mitochondrial ABC transporter. Moreover, the viewpoint of ABC transport protein preference was proposed, according to the law of choosing and transporting metal ion. At the end, the research direction and potential application of ABC transport protein were simply discussed. Thus, it would be reliable reference for further research of ABC transporter protein.
|
Received: 25 March 2016
Published: 06 August 2016
|
|
|
|
|
[1]Ahner B A & Morel F M M. Phytochelatin production in marine algae. 2. Induction by various metals [J][J].Limnology and Oceanography, 1995, 40(4):658-665
[2]Anjard C & Loomis W F.2002. Evolutionary analyses of ABC transporters of Dictyostelium discoideum [J]. Eukaryotic Cell, 1(4):643-652.
[3]Bairoch A.1992. PROSITE: a dictionary of sites and patterns in proteins [J]. Nucleic Acids Research, 20(Supply):2013-2018.
[4]Beek J T, Guskov A, Slotboom D J.2014. Structural diversity of ABC transporters [J]. The Journal of Cell Biology, 143 (4):419-435.
[5]Bhuiyan M S U, Min R S, Jeong W J, et al.2011. Overexpression of a yeast cadmium factor 1 (YCF1) enhances heavy metal tolerance and accumulation in Brassica juncea [J]. Plant Cell Tissue & Organ Culture, 105(1):85-91.
[6]Bolchi A, Ruotolo R, Marchini G, et al.2011. Genome-wide inventory of metal homeostasis-related gene products including a functional phytochelatin synthase in the hypogeous mycorrhizal fungus Tuber melanosporum [J]. Fungal Genetics and Biology Fungal Genetics and Biology, 48(6):573-584.
[7]Broderick J B.2007. Assembling iron-sulfur clusters in the cytosol [J]. Nature Chemical Biology, 3:243-244.
[8]Broehan G, Kroeger T, Lorenzen M, et al.2013. Functional analysis of the ATP-binding cassette (ABC) transporter gene family of Tribolium castaneum [J]. BMC Genomics, 14:6.
[9]Brunetti P, Zanella L, Paolis A D, et al.2015. Cadmium-inducible expression of the ABC-type transporter AtABCC3 increases phytochelatin-mediated cadmium tolerance in Arabidopsis [J]. Journal of Experimental Botany, 66(13):3815-3829.
[10]Choi H, Jin J J, Choi S, et al.2011. An ABCG/WBC-type ABC transporter is essential for transport of sporopollenin precursors for exine formation in developing pollen [J]. The Plant Journal, 65(2):181-193.
[11]Dean M & Annilo T.2005. Evolution of the ATP-binding cassette (ABC) transporter superfamily in vertebrates [J]. Annual Review of Genomics and Human Genetics, 6(6):899-910.
[12]Dean M, Hamon Y, Chimini G.2001. The human ATP-binding cassette (ABC) transporter superfamily [J]. Journal of Lipid research, 42:1007-1017.
[13]Dong J S, Lai R, Jennings J L, et al.2005. The novel ATP-binding cassette protein ARB1 is a shuttling factor that stimulates 40S and 60S ribosome biogenesis [J]. Molecular and Cellular Biology, 25(22):9859-9873.
[14]Dong J S, Lai R, Nielsen K, et al.2004. The essential ATP-binding cassette protein RLI1 functions in translation by promoting preinitiation complex assembly [J]. The Journal of Biological Chemistry, 279(10):42157-42168.
[15]Ewart G D, Cannell D, Cox G B, et al.1994. Mutational analysis of the traffic ATPase (ABC) transporters involved in uptake of eye pigment precursors in Drosophila melanogaster. Implications for structure-function relationships [J]. The Journal of Biological Chemistry, 269(14):10370-10377.
[16]Ezaki B, Takahashi K, Utsumi K, et al.2015. A half-type AvABCG1 transporter derived from Andropogon virginicus L. confers aluminum tolerance [J]. Environmental and Experimental Botany, 118:21-31.
[17]González-Guerrero M, Benabdellah K, Valderas A, et al.2010. GintABC1 encodes a putative ABC transporter of the MRP subfamily induced by Cu, Cd, and oxidative stress in Glomus intraradices [J]. Mycorrhiza, 20(2):137-146.
[18]Gottesman M M, Fojo T, Bates S E.2002. Multidrug resistance in cancer: role of ATP-dependent transporters [J]. Nature Reviews Cancer, 2(1):48–58.
[19]Grill E, Winnacker E L, Zenk M H.1987. Phytochelatins, a class of heavy-metal-binding peptides from plants are functionally analogous to metallothioneins [J]. PNAS, 84(2): 439-443.
[20]Hettema E H, van Roermund CW, Distel B, et al.1996. The ABC transporter proteins Pat1 and Pat2 are required for import of long-chain fatty acids into peroxisomes of Saccharomyces cerevisiae [J]. The EMBO Journal, 15(15):3813-3822.
[21]Higgins C F.1992. ABC transporters: from microorganisms to man [J]. Annual Review of Cell Biology, 8:67-113.
[22]Hlavá?ek O, Ku?erová H, Harant K, et al.2009. Putative role for ABC multidrug exporters in yeast quorum sensing [J]. FEBS Letters, 583(7):1107-1113.
[23]Huang C F, Yamaji N, Chen Z C, et al.2012. A tonoplast-localized half-size ABC transporter is required for internal detoxi?cation of aluminum in rice [J]. The Plant Journal, 69(5), 857-867.
[24]Huang J, Zhang Y, Peng J S, et al.2012. Fission yeast HMT1 lowers seed cadmium through phytochelatin-dependent vacuolar sequestration in Arabidopsis [J]. Plant Physiology, 158(4):1779-1788.
[25]Iwaki T, Giga-Hama Y, Takegawa K.2006. A survey of all 11 ABC transporters in fission yeast: two novel ABC transporters are required for red pigment accumulation in a Schizosaccharomyces pombe adenine biosynthetic mutant [J]. Microbiology, 152(8): 2309-2321.
[26]Kang J, Park J, Choi H, et al.2007. Plant ABC Transporters [J]. The Arabidopsis Book, e0153.
[27]Kim D Y, Bovet L, Kushnir S, et al.2006. AtATM3 is involved in heavy metal resistance in Arabidopsis [J]. Plant Physiology, 140(3):922-632.
[28]Kim D Y, Bovet L, Maeshima M, et al.2007. The ABC transporter AtPDR8 is a cadmium extrusion pump conferring heavy metal resistance [J]. The Plant Journal, 50(2):207-218.
[29]Kim S, Selote D S, Vatamaniuk O K.2010. The N-terminal extension domain of the C. elegans half-molecule ABC transporter, HMT-1, is required for protein-protein interactions and function [J]. PLOS One, 5(9): e12938.
[30]Kispal G, Csere P, Guiard B, et al.1997. The ABC transporter Atm1p is required for mitochondrial iron homeostasis [J]. FEBS Letters, 418(3):346-350.
[31]Kispal G, Csere P, Prohl C, et al.1999. The mitochondrial proteins Atm1p and Nfs1p are essential for biogenesis of cytosolic Fe/S proteins [J]. The EMBO Journal, 18(14):3981-3989.
[32]Kispal G, Sipos K, Lange H, et al.2005. Biogenesis of cytosolic ribosomes requires the essential iron-sulphur protein Rli1p and mitochondria [J]. The EMBO Journal, 24(3):589-598.
[33]Klein M, Mamnun Y M, Eggmann T, et al.2002. The ATP-binding cassette (ABC) transporter Bpt1p mediates vacuolar sequestration of glutathione conjugates in yeast. FEBS Letters, 520(1-3):63-67.
[34]Kovalchuk A & Driessen A J M.2010. Phylogenetic analysis of fungal ABC transporters [J]. BMC Genomics, 11:177.
[35]Lage H.2003. ABC-transporters: implications on drug resistance from microorganisms to human cancers [J]. International Journal of Antimicrobial Agents, 22(3):188-199.
[36]Lee J Y, Yang J G, Zhitnitsky D, et al.2014. Structural basis for heavy metal detoxification by an Atm1-type ABC exporter [J]. Science, 343(6175):1133-1135.
[37]Leighton J & Schatz G.1995. An ABC transporter in the mitochondrial inner membrane is required for normal growth of yeast [J]. The EMBO Journal, 14(1):188-195.
[38]Li Z S, Szczypka M, Lu Y P, et al.1996. The yeast cadmium factor protein (YCF1) is a vacuolar glutathione S-conjugate pump [J]. The Journal of Biological Chemistry, 271(11):6509-6517.
[39]Liu H Y, Chiang Y C, Pan J, et al.2001. Characterization of CAF4 and CAF16 reveals a functional connection between the CCR4-NOT complex and a subset of SRB proteins of the RNA polymerase II holoenzyme [J]. The Journal of Biological Chemistry, 276(10):7541-7548.
[40]Lubelski J, Konings W N, Driessen A J.2007. Distribution and physiology of ABC-type transporters contributing to multidrug resistance in bacteria [J]. Microbiology and Molecular Biology Reviews, 71(3):463-476.
[41]Martinoia E, Grill E, Tommasini R, et al.1993. ATP-dependent glutathione S-conjugate export pump in the vacuolar membrane of plants [J]. Nature, 364: 247-249.
[42]Mendoza-CózatI D G, Zhai Y, Jobe T O, et al.2010. Tonoplast-localized Abc2 transporter mediates phytochelatin accumulation in vacuoles and confers cadmium tolerance [J]. The Journal of Biological Chemistry, 285(52): 40416-40426.
[43]Mikolay A & Nies D H.2009. The ABC-transporter AtmA is involved in nickel and cobalt resistance of Cupriavidus metallidurans strain CH34 [J]. Antonie van Leeuwenhoek, 96:183.
[44]Moons A.2003. Ospdr9, which encodes a PDR-type ABC transporter, is induced by heavy metals, hypoxic stress and redox perturbations in rice roots. FEBS letters, 553(3): 370-375.
[45]Murasugi A, Wada C, Hayashi Y.1981. Cadmium-binding peptide induced in ?ssion yeast, Schizosaccharomyces pombe [J]. The Journal of Biochemistry, 90(5): 1561-1565.
[46]Olsson S, Puente-Sánchez F, Gómez M J, et al.2015. Transcriptional response to copper excess and identification of genes involved in heavy metal tolerance in the extremophilic microalga Chlamydomonas acidophila [J]. Extremophiles, 19(3):657-672.
[47]Ortiz D F, Kreppel L, Speiser D M, et al.1992. Heavy metal tolerance in the fission yeast requires an ATP-binding cassette-type vacuolar membrane transporter [J]. The EMBO Journal, 11(10):3491-3499.
[48]Ortiz D F, Ruscitti T, McCue K F, et al.1995. Transport of metal-binding peptides by HMT1, a fission yeast ABC-type vacuolar membrane protein [J]. The Journal of Biological Chemistry, 270(9):4721-4728.
[49]Park J, Song W Y, Ko D, et al.2012. The phytochelatin transporters AtABCC1 and AtABCC2 mediate tolerance to cadmium and mercury [J]. The Plant Journal, 69(2):278-288.
[50]Peelman F, Labeur C, Vanloo B, et al.2003. Characterization of the ABCA transporter subfamily: identification of prokaryotic and eukaryotic members, phylogeny and topology [J]. Journal of Molecular Biology, 325(2): 259-274.
[51]Petrovic S, Pascolo L, Gallo R, et al.The products of YCF1 and YLL015w (BPT1) cooperate for the ATP-dependent vacuolar transport of unconjugated bilirubin in Saccharomyces cerevisiae[J].Yeast, 2000, 16(6):561-571
[52]Prévéral S, Gayet L, Moldes C, et al.2009. A common highly conserved cadmium detoxification mechanism from bacteria to humans [J]. The Journal of Biological Chemistry, 284(8): 4936-4943.
[53]Rea P A.2007. Plant ATP-binding cassette transporters [J]. Annual Review of Plant Biology, 58:347-375.
[54]Rees D C, Johnson E, Lewinson O.2009. ABC transporters: the power to change [J]. Nature Reviews Molecular Cell Biology, 10:218-227.
[55]Schaedler T A, Thornton J D, Kruse I, et al.2014. A conserved mitochondrial ATP-binding cassette transporter exports glutathione polysulfide for cytosolic metal cofactor assembly [J]. The Journal of Biological Chemistry, 289(34): 23264-23274.
[56]Sipos K, Lange H, Fekete Z, et al.2002. Maturation of cytosolic iron-sulfur proteins requires glutathione, The Journal of Biological Chemistry, 277(30):26944-26949.
[57]Song W Y, Park J, Mendoza-Cózatl D G, et al.2010. Arsenic tolerance in Arabidopsis is mediated by two ABCC-type phytochelatin transporters. PNAS, 107(49):21187-21192.
[58]Song W Y, Park J, Mendoza-Cózatl D G, et al.2014. Phytochelatin–metal(loid) transport into vacuoles shows different substrate preferences in barley and Arabidopsis [J]. Plant, Cell and Environment, 37(5):1192–1201.
[59]Song W Y, Yamaki T, Yamaji N, et al.2014. A rice ABC transporter, OsABCC1, reduces arsenic accumulation in the grain [J]. PNAS, 111(44): 15699–15704.
[60]Sousa C A, Hanselaer S, Soares E V.2015. ABCC subfamily vacuolar transporters are involved in Pb (Lead) detoxification in Saccharomyces cerevisiae [J]. Applied Biochemistry and Biotechnology, 175(1): 65-74.
[61]Teschner J, Lachmann N, Schulze J, et al.2010. A novel role for Arabidopsis mitochondrial ABC transporter ATM3 in molybdenum cofactor biosynthesis [J]. the Plant Cell, 22(2): 468-480.
[62]Verrier P J, Bird D, Burla B, et al.2008. Plant ABC proteins--a unified nomenclature and updated inventory [J]. Trends in Plant Science. 13(4):151-159.
[63]Walker J E, Saraste M, Runswick M J, et al.1982. Distantly related sequences in α-and β-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold [J]. the EMBO Journal, 1(1):945-951.
[64]Wang Y, Zong K, Jiang L, et al.2011. Characterization of an Arabidopsis cadmium-resistant mutant cdr3-1D reveals a link between heavy metal resistance as well as seed development and flowering [J]. Planta, 233(4):697-706.
[65]Wenzel J J, Piehler A, Kaminski W E.2007. ABC A-subclass proteins: gatekeepers of cellular phospho- and sphingolipid transport [J]. Frontiers in Bioscience, 12(9):3177-3193.
[66]Wilcox L J, Balderes D A, Wharton B, et al.2002. Transcriptional profiling identifies two members of the ATP-binding cassette transporter super family required for sterol uptake in yeast [J]. The Journal of Biological Chemistry, 277(36):32466-32472.
[67]Yazaki K.2006. ABC transporters involved in the transport of plant secondary metabolites [J]. FEBS Letters, 580(4):1183-1191.
[68]Zhao D K, Li T, Shen M, et al.Diverse strategies conferring extreme cadmium (Cd) tolerance in the dark septate endophyte (DSE), Exophiala pisciphila: Evidence from RNA-seq data [J]. Microbiological Research, 170:2-35.
|
|
|
|