|
|
Genetic Diversity of Microsatellite Markers in Zhijin White Geese (Anser cygnoides orientalis) and Its Association Analysis with Body Size Indexes |
GUO Zhi-Li1,*, ZHAO Zhong-Long1,*, YANG Hong2, WANG Tian-Song3, YE Li2, ZHOU Yan2, YANG Yuan-Qing2, YUAN Jian1, WANG Zhi-Wei1, ZHANG Yong1,4,** |
1 Key Laboratory of Genetic Breeding and Reproduction of Plateau Mountain Animals, Ministry of Education/Key Laboratory of Animal Genetic Breeding and Reproduction/College of Animal Science, Guizhou University, Guiyang 550025, China; 2 Bijie City Animal Husbandry Station, Bijie 551700, China; 3 Agricultural college, Tongren Polytechnic College, Tongren 554300, China; 4 Guizhou Cattle Industry Group Science & Technology Services Co., Ltd., Guiyang 550025, China |
|
|
Abstract The Zhijin white goose (Anser cygnoides orientalis) is a local breed developed through long-term artificial selection and terroir domestication, and it possesses the traits of tough feeding resistance and great adaptability. To investigate the accurate genetic information and to screen the loci associated with body size traits in Zhijin white goose, in this study, microsatellite technology was used to analyze the genetic diversity within the Zhijin white goose population and performed multiple comparisons of different genotypes in loci related to body size, aiming to provide a theoretical basis for the conservation and development of germplasm resources of Zhijin white goose. A total of 101 Zhijin white geese were measured, and 15 pairs of microsatellite primers with good polymorphism were selected from 52 pairs of microsatellite primers. There were 63 alleles detected; The average number of valid alleles was 2.066 5; The CKW21 locus contained the most valid alleles. The observed heterozygosity of each locus ranged from 0 to 0.969 7 and the expected heterozygosity ranged from 0.265 7 to 0.676 2, with the lowest expected heterozygosity value for locus Ans17 and the highest expected heterozygosity value for locus CKW21. The Shannon index ranged from 0.539 2 to 1.307 4, and the CKW21 locus had the highest Shannon's information index. The polymorphism information content of each locus ranged from 0.248 9 to 0.620 2, with the Ans17 locus having the lowest polymorphism information content and the CKW21 locus having the highest polymorphism information content. The mean value of the inbreeding coefficient was 0.197 2. The loci 5A5397, 5A265164, Ans21, Ans25, CKW10, CKW48, and TTUCG2 were found to deviate from Hardy-Weinberg equilibrium significantly by chi-square test. The correlation analysis revealed that in male geese, 5 loci were correlated with body weight, body oblique length, chest width, sternum length, pelvic width and shank length, respectively; In female geese, 10 loci were correlated with different body size indexes except body oblique length. The results of the study can provide some reference for the molecular marker-assisted breeding of Zhijin white goose.
|
Received: 17 November 2022
|
|
Corresponding Authors:
**gzuzy@139.com
|
About author:: * These authors contributed equally to this work |
|
|
|
[1] 白优. 2018. 乌蒙凤鸡种质测定及其遗传多样性分析[D]. 硕士学位论文, 贵州大学, 导师: 张勇, pp. 79-80. (Bai Y.2018. Study on germplasm characteristicsand genetic diversity of Wumengfeng chicken[D]. Thesis for M.S.,Guizhou University, Supervisor: Zhang Y, pp. 79-80.) [2] 陈祥, 丁玫, 许厚强, 等. 2015. 贵州5个地方猪品种微卫星标记的遗传多样性[J]. 中国畜牧杂志, 51(07): 1-5. (Chen X, Ding M, Xu H Q, et al.2015. Genetic diversity of microsatellite markers in five local pig breeds in Guizhou Province[J]. Chinese Journal of Animal Science, 51(07): 1-5.) [3] 范佳英, 孙桂荣, 康相涛, 等. 2010. 固始白鹅体尺性状微卫星DNA标记的筛选[J]. 西北农林科技大学学报(自然科学版), 38(02): 19-24. (Fan J Y, Sun G R, Kang X T, et al.2010. Screening of microsatellite DNA markers for body size traits of Gushi white geese[J]. Journal of Northwest A&F University (Natural Science Edition), 38(02): 19-24.) [4] 方倩倩, 刘雅丽, 李祥龙, 等. 2016. 利用微卫星标记技术分析太湖鹅保种效果[J]. 畜牧与兽医, 48(12): 19-24. (Fang Q Q, Liu Y L, Li X L, et al.2016. Analysis of conservation effect of Taihu geese using microsatellite labeling technology[J]. Animal Science and Veterinary Medicine, 48(12): 19-24.) [5] 郭丹, 王婕, 姜怀志. 2010. 辽宁绒山羊微卫星多态性及其与经济性状相关性研究[J]. 中国草食动物, 30(06): 5-8. (Guo D, Wang J, Jiang H Z.2010. Study on microsatellite polymorphism and its correlation with economic traits in Liaoning cashmere goats[J]. Chinese Herbivores, 30(06): 5-8.) [6] 巩元芳, 段玲欣, 倪静, 等. 2012. 长白猪微卫星标记的遗传多样性[J]. 河北科技师范学院学报, 26(04): 15-19. (Gong Y F, Duan L X, Ni J, et al.2012. Genetic diversity of microsatellite markers in Landrace swine[J]. Journal of Hebei Normal University of Science and Technology, 26(04): 15-19.) [7] 黄胜海, 李慧芳, 陈宽维, 等. 2006. 5个白鹅群体的遗传结构和进化分析[J]. 畜牧与兽医, (06): 20-22. (Huang S H, Li H F, Chen K W, et al. 2006. Genetic structure and evolution analysis of five white goose populations[J]. Animal Science and Veterinary Medicine, (06): 20-22.) [8] 梁庆玲, 牛志刚, 杨丹, 等. 2012. 陶赛特羊Carwell基因微卫星标记多态性与体重和体尺指标的相关性分析[J]. 中国草食动物, 32(01): 12-16. (Liang Q L, Niu Z G, Yang D, et al.2012. Correlation analysis of Carwell gene microsatellite marker polymorphisms with body weight and body size in Tauset sheep[J]. Chinese Herbivores, 32(01): 12-16.) [9] 李标, 张瑞莹, 王小琪, 等. 2019. 滩羊微卫星标记多态性及与体尺性状关联分析[J]. 生物技术通报, 35(06): 131-137. (Li B, Zhang R Y, Wang X Q, et al.2019. Microsatellite polymorphism and its correlation analysis with body size traits of Tan sheep[J]. Biotechnology Bulletin, 35(06): 131-137.) [10] 季华员, 黄江南, 李海琴, 等. 2017. 兴国灰鹅微卫星标记的遗传多样性分析[J]. 畜牧与兽医, 49(08): 6-9. (Ji H Y, Huang J N, LI H Q, et al.2017. Genetic diversity analysis of microsatellite markers in Xingguo grey geese[J]. Animal Science and Veterinary Medicine, 49(08): 6-9.) [11] 李进军, 沈军达, 陶争荣, 等. 2011. 微卫星标记与永康灰鹅体重、体尺及屠体状的相关分析[J]. 家畜生态学报, 32(06): 33-38. (Li J J, Shen J D, Tao Z R, et al.2011. Correlation analysis of microsatellite markers with body weight, body size and carcass shape of Yongkang grey geese[J]. Chinese Journal of Animal Ecology, 32(06): 33-38.) [12] 李慧芳, 屠云洁, 汤青萍, 等. 2005. 6个中国重点保护地方鹅品种的遗传多样性[J]. 四川农业大学学报, (04): 466-469. (Li H F, Tu Y J, Tang Q P, et al. 2005. Genetic diversity of six key protected local goose breeds in China[J]. Journal of Sichuan Agricultural University, (04): 466-469.) [13] 李馨, 崔燕, 杨隽, 等. 2004, 微卫星DNA标记技术在畜禽遗传多样性研究中的应用[J]. 黑龙江畜牧兽医, (09): 39-40. (Li X, Cui Y, Yang J, et al. 2004. Application of microsatellite DNA marker technology in the study of genetic diversity of livestock and poultry[J]. Heilongjiang Animal Science and Veterinary, (09): 39-40.) [14] 马杰. 2006. 太湖鹅生长性状与微卫星DNA标记的相关性分析[D]. 硕士学位论文, 南京农业大学, 导师: 徐银学, pp. 17-24. (Ma J.2006. Correlation analysis between growth traits and microsatellite DNA markers in Taihu geese[D]. Thesis for M.S., Nanjing Agricultural University, Suppervisor: Xu Y X, pp. 17-24.) [15] 汤青萍, 陈宽维, 屠云洁, 等. 2006. 应用微卫星标记研究中国15个地方白羽鹅品种遗传多样性[J]. 南京农业大学学报, (02): 127-130. (Tang Q P, Chen K W, Tu Y J, et al. 2006. Genetic diversity of 15 local white-feathered geese in China using micro-satellite markers[J]. Journal of Nanjing Agricultural University, (02): 127-130.) [16] 王清峰, 陈胜昌, 乔艳龙, 等. 2017. 1~4周龄织金白鹅能量和粗蛋白需要量研究[J]. 中国家禽, 39(02): 60-63. (Wang Q F, Chen S C, Qiao Y L, et al.2017. Study on energy and crude protein requirement of Zhijin white geese aged 1-4 weeks[J]. Chinese Poultry, 39(02): 60-63.) [17] 吴盈萍, 高凤, 彭箫, 等. 2019. 利用微卫星标记分析伊犁鹅的保种效果[J]. 中国畜牧兽医, 46(06): 1746-1755. (Wu Y P, Gao F, Peng X, et al.2019. Analysis of conser-vation effect of Yili geese by microsatellite markers[J]. Chinese Journal of Animal Science and Veterinary Medicine, 46(06): 1746-1755. ) [18] 杨宇泽, 张剑, 路永强, 等. 2020. 北京油鸡群体世代间遗传结构分析[J]. 中国家禽, 42(07): 105-108. (Yang Y Z, Zhang J, Lu Y Q, et al.2020. Genetic structure analysis among generations of Beijing You chicken[J]. Chinese Poultry, 42(07): 105-108.) [19] 曾涛, 孙思维, 田勇, 等. 2017. 利用微卫星标记分析雁荡土鸡及其他3个鸡群体遗传多样性[J]. 浙江农业学报, 29(07): 1070-1076. (Zeng T, Sun S X, Tian Y, et al.20-17. Genetic diversity analysis of Yandang and other three chicken populations using microsatellite markers[J]. Acta Agriculturae Zhejiangensis, 29(07): 1070-1076.) [20] Botstein D, White R L, Skolnick M, et al.1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms[J]. American Journal of Human Genetics, 32(3): 314-331. [21] Cao Z Z, Su D, Zhao Y Y, Liu M, et al.2014. Development of eight novel microsatellite markers for Huoyan geese[J]. Molecular Genetics and Metabolism, 13(3): 5562-5565. [22] Lai F, Tu P, Ding S, et al.2018. Survey of genetic structure of geese using novel microsatellite markers[J]. Asian-Australasian Journal of Animal Sciences, 31(2): 167-179. [23] Mohesen G, Ghodrat R M.2007. Use of microsatellite markers in poultry research[J]. International Journal of Poultry Science, 6(2): 145-153 [24] Van Ba N, Nam L Q, Do D N, et al.2020. An assessment of genetic diversity and population structures of fifteen Vietnamese indigenous pig breeds for supporting the decision making on conservation strategies[J]. Tropical Animal Health and Production, 52(3): 1033-1041. [25] Warzecha J, Oczkowicz M, Rubis D, et al.2019. An Evaluation of the genetic structure of geese maintained in Poland on the basis of microsatellite markers[J]. Animals, 9(10): 737. |
|
|
|