|
|
Application of CRISPR/Cas Genome Editing Technology in Fruit Trees Breeding |
NI Hai-Zhi, WANG Yin, WANG Ping, CHENG Yu-Fang, YAN Bang-Guo, CHEN Fang-Yong* |
Citrus Research Institute of Zhejiang Province, Taizhou 318026, China |
|
|
Abstract With the advent of CRISPR/Cas system, plant genome editing has entered a new era of precise editing for any genes of interest. The CRISPR/Cas toolkits have been successfully tested on a wide variety of fruit tree species. According to the statistics of breeding research, researchers have edited about 45 fruit tree genes by CRISPR/Cas genome editing technology, which were mainly used to enhance disease resistance, prolong shelf-time, early flowering, tree dwarf and increase shoot branching. However, the fruit tree genome editing still relies mostly on Cas9-based indel mutation and Agrobacterium-mediated stable transformation. Transient transformation for transgene-free genome editing is preferred, but it typically has very low efficiency in fruit trees, substantially limiting its potential utility. In this review, the CRISPR/Cas system and its related technologies were summarized, and then we introduced the delivery methods of the CRISPR /Cas expression vector into plant genome and the current status of fruit tree genome editing practices using the CRISPR/Cas system, and discussed the problems impeding the efficient application of the CRISPR/Cas toolkits for fruit trees genome editing, as well as future prospects. This review provides reference for research on gene function and molecular breeding of fruit trees.
|
Received: 29 June 2022
|
|
Corresponding Authors:
* cfy17266@126.com
|
|
|
|
[1] 郭晔, 万东艳, 柴壮壮, 等. 2019. 利用 CRISPR/Cas9 敲除葡萄 VviPDS1 基因的研究[J]. 园艺学报, 46(04): 623-634. (Gu Y, Wang D Y, Chai Z Z, et al. 2019. Knock-out anal-ysis of VviPDS1 gene using CRISPR/Cas9 in grapevine[J]. Acta Horticulturae Sinica, 46(04): 623-634.) [2] 胡春华, 邓贵明, 孙晓玄, 等. 2017. 香蕉 CRISPR/Cas9 基因编辑技术体系的建立[J]. 中国农业科学, 50(07): 1294-1301. (Hu C H, Deng G M, Sun X X, et al. 2017. Estab-lishment of an efficient CRISPR/Cas9-mediated gene editing system in banana[J]. Scientia Agricultura Sinica,50(07): 1294-1301.) [3] 倪海枝, 王引, 颜帮国, 等. 2023. 果树基因组辅助育种技术研究现状与展望[J]. 分子植物育种, 21(05): 1535-1550. (Ni H Z, Wang Y, Yan B G, et al. 2023. Research status and prospects of genomics-assisted breeding technology in fruit trees[J]. Molecular Plant Breeding, 21(05): 1535-1550.) [4] 杨锋, 杨钦淞, 高雨豪, 等. 2021. 梨愈伤组织双靶点 CRIS-PR/Cas9 基因编辑系统的建立[J]. 园艺学报, 48(05):873-882. (Yang F, Yang Q S,Gao Y H, et al. 2021. Estab-lishment of dual-cut CRISPR/Cas9 gene editing system in pear calli[J]. Acta Horticulturae Sinica, 48(05): 873-882.) [5] 杨禄山, 郭晔, 胡洋, 等. 2020. 利用 CRISPR/Cas9 系统敲除葡萄中VviEDR2 提高对白粉病的抗性[J]. 园艺学报,47(04): 623-634. (Yang L S, Guo Y, Hu Y, et al. 2020. CRISPR/Cas9-mediated mutagenesis of VviEDR2 re-sults in enhanced resistance to powdery mildew in grapevine(Vitis vinifera)[J]. Acta Horticulturae Sinica, 47(04): 623-634.) [6] 邹修平, 范迪, 彭爱红, 等. 2019.CRISPR/Cas9 介导柑橘 Cs- LOB1 基因启动子的多位点编辑[J]. 园艺学报, 46(02):337-344. (Zou X P, Fan D, Peng A H, et al. 2019. CRIS-PR/Cas9-mediated editing of multiple sites in the citrus CsLOB1 promoter[J]. Acta Horticulturae Sinica, 46(02):337-344.) [7] Abdelrahman M, Wei Z, Rohila J S, et al. 2021. Multiplex ge-nome-editing technologies for revolutionizing plant biol-ogy and crop improvement[J]. Frontiers in Plant Sci-ence, 12: 721203. [8] Alquézar B, Bennici S, Carmona L, et al. 2022. Generation of transfer-DNA-free base-edited citrus plants[J]. Frontiers in Plant Science, 13: 835282. [9] Alvarez D, Cerda-Bennasser P, Stowe E, et al. 2021. Fruit crops in the era of genome editing: closing the regulato-ry gap[J]. Plant Cell Reports, 40(6): 915-930. [10] Anjanappa R B, Gruissem W.2021. Current progress and challenges in crop genetic transformation[J]. Journal of Plant Physiology, 261: 153411. [11] Atkins P A, Voytas D F.2020. Overcoming bottlenecks in plant gene editing[J]. Current Opinion in Plant Biology, 54: 79-84. [12] Awasthi P, Khan S, Lakhani H, et al. 2022. Transgene-free ge-nome editing supports the role of carotenoid cleavage di-oxygenase 4 as a negative regulator of β-carotene in ba-nana[J]. Journal of Experimental Botany, 73(11): 3401-3416. [13] Calvache C, Vazquez-Vilar M, Selma S, et al. 2022. Strong and tunable anti-CRISPR/Cas activities in plants[J]. Plant Biotechnology Journal, 20(2): 399-408. [14] Chang L, Wu S, Tian L.2019. Effective genome editing and identification of a regiospecific gallic acid 4-O-glycosyl-transferase in pomegranate (Punica granatum L.)[J].Horticulture Research, 6(1): 1-15. [15] Charrier A, Vergne E, Dousset N, et al. 2019. Efficient target-ed mutagenesis in apple and first time edition of pear us-ing the CRISPR-Cas9 system[J]. Frontiers in Plant Sci-ence, 10: 40. [16] Dalla Costa L, Piazza S, Pompili V, et al. 2020. Strategies to produce T-DNA free CRISPRed fruit trees via Agrobacte- rium tumefaciens stable gene transfer[J]. Scientific Re-ports, 10(1): 20155. [17] De Mori G, Zaina G, Franco-Orozco B, et al. 2021. Targeted mutagenesis of the female-suppressor SyGI gene in tetra-ploid kiwifruit by CRISPR/CAS9[J]. Plants, 10(1): 62. [18] Debernardi J M, Tricoli D M, Ercoli M F, et al. 2020. A GRF-GIF chimeric protein improves the regeneration efficien-cy of transgenic plants[J]. Nature Biotechnology, 38(11): 1274-1279. [19] Demirer G S, Silva T N, Jackson C T, et al. 2021. Nanotech-nology to advance CRISPR-Cas genetic engineering of plants[J]. Nature Nanotechnology, 16(3): 243-250. [20] Dutt M, Mou Z, Zhang X, et al. 2020. Efficient CRISPR/Cas9 genome editing with Citrus embryogenic cell cultures[J]. BMC Biotechnology, 20(1): 58. [21] Ellison E E, Nagalakshmi U, Gamo M E, et al. 2020. Multi-plexed heritable gene editing using RNA viruses and mobile single guide RNAs[J]. Nature Plants, 6(6): 620-624. [22] Fedorina J, Tikhonova N, Ukhatova Y, et al. 2022. Grapevine gene systems for resistance to gray mold botrytis cine-rea and powdery mildew erysiphe necator[J]. Agrono-my, 12(2): 499. [23] Feng Q, Xiao L, He Y, et al. 2021. Highly efficient, genotype- independent transformation and gene editing in water-melon (Citrullus lanatus) using a chimeric ClGRF4-GIF1 gene[J]. Journal of Integrative Plant Biology, 63(12):2038-2042. [24] Fister A S, Landherr L, Maximova S N, et al. 2018. Transient expression of CRISPR/Cas9 machinery targeting Tc- NPR3 enhances defense response in Theobroma cacao [J]. Frontiers in Plant Science, 9: 268. [25] Gardiner J, Ghoshal B, Wang M, et al. 2022. CRISPR-Cas- mediated transcriptional control and epi-mutagenesis[J]. Plant Physiology, 188(4): 1811-1824. [26] Ghogare R, Ludwig Y, Bueno G M, et al. 2021. Genome edit-ing reagent delivery in plants[J]. Transgenic Research,30(4): 321-335. [27] Han X, Yang Y, Han X, et al. 2022. CRISPR Cas9-and Cas12a-mediated gusA editing in transgenic blueberry[J]. Plant Cell, Tissue and Organ Culture, 148(2): 217-229. [28] Hassan M M, Zhang Y, Yuan G, et al. 2021. Construct design for CRISPR/Cas-based genome editing in plants[J]. Trends in Plant Science, 26(11): 1133-1152. [29] He J, Bao S, Deng J, et al. 2022a. A chromosome-level ge-nome assembly of Artocarpus nanchuanensis (Moraceae), an extremely endangered fruit tree[J]. GigaScience, 11: giac042. [30] He Y, Mudgett M, Zhao Y.2022b. Advances in gene editing without residual transgenes in plants[J]. Plant Physiolo-gy, 188(4): 1757-1768. [31] Hu C, Sheng O, Deng G, et al. 2021. CRISPR/Cas9-mediated genome editing of MaACO1 (aminocyclopropane-1-car-boxylate oxidase 1) promotes the shelf life of banana fruit[J]. Plant Biotechnology Journal, 19(4): 654-656. [32] Hua K, Han P, Zhu J K.2022. Improvement of base editors and prime editors advances precision genome engineer-ing in plants[J]. Plant Physiology, 188(4): 1795-1810. [33] Huang X, Wang Y and Wang N.2022a. Highly efficient gener-ation of canker-resistant sweet orange enabled by an im-proved CRISPR/Cas9 system[J]. Frontiers in Plant Sci-ence, 12: 769907. [34] Huang X, Wang Y, Wang N.2022b. Base editors for citrus gene editing[J]. Frontiers in Genome Editing, 4: 852867 [35] Huang X, Wang Y, Xu J, et al. 2020. Development of multi-plex genome editing toolkits for citrus with high effica-cy in biallelic and homozygous mutations[J]. Plant Mo-lecular Biology, 104(3): 297-307. [36] Ji X, Yang B, Wang D.2020. Achieving plant genome editing while bypassing tissue culture[J]. Trends in Plant Sci-ence, 25(5): 427-429. [37] Jia H, Omar A A, Orbović V, et al. 2022a. Biallelic editing of the LOB1 promoter via CRISPR/Cas9 creates canker-re-sistant‘Duncan’grapefruit[J]. Phytopathology, 112(2):308-314. [38] Jia H, Orbovic V, Jones J B, et al. 2016. Modification of the PthA4 effector binding elements in Type I CsLOB1 pro-moter using Cas9/sgRNA to produce transgenic Duncan grapefruit alleviating XccΔpthA4: dCsLOB 1.3 infection[J]. Plant Biotechnology Journal, 14(5): 1291-1301. [39] Jia H, Orbović V, Wang N.2019. CRISPR-LbCas12a-mediat-ed modification of citrus[J]. Plant Biotechnology Jour-nal, 17(10): 1928-1937. [40] Jia H, Wang N.2020. Generation of homozygous canker-resis-tant citrus in the T0 generation using CRISPR-SpCas9p[J]. Plant Biotechnology Journal, 18(10): 1990-1992. [41] Jia H, Wang N.2014. Targeted genome editing of sweet or-ange using Cas9/sgRNA[J]. PLOS ONE, 9(4): e93806. [42] Jia H, Wang Y, Su H, et al. 2022b. LbCas12a-D156R efficient-ly edits LOB1 effector binding elements to generate can-ker-resistant citrus plants[J]. Cells, 11(3): 315. [43] Jia H, Xu J, Orbović V, et al. 2017a. Editing citrus genome via SaCas9/sgRNA system[J]. Frontiers in Plant Science, 8:2135. [44] Jia H, Zhang Y, Orbović V, et al. 2017b. Genome editing of the disease susceptibility gene CsLOB1 in citrus confers resistance to citrus canker[J]. Plant biotechnology jour-nal, 15(7): 817-823. [45] Jiao B, Hao X, Liu Z, et al. 2022. Engineering CRISPR im-mune systems conferring GLRaV-3 resistance in grape-vine[J]. Horticulture Research, 9: uhab023. [46] Jiao J, Kong K, Han J, et al. 2021. Field detection of multiple RNA viruses/viroids in apple using a CRISPR/Cas12a- based visual assay[J]. Plant Biotechnology Journal, 19(2): 394-405. [47] Kaur N, Alok A, Kaur N, et al. 2018. CRISPR/Cas9-mediated efficient editing in phytoene desaturase (PDS) demon-strates precise manipulation in banana cv. Rasthali ge-nome[J]. Functional & Integrative Genomics, 18(1): 89-99. [48] Kaur N, Alok A, Kumar P, et al. 2020. CRISPR/Cas9 directed editing of lycopene epsilon-cyclase modulates metabol-ic flux for β -carotene biosynthesis in banana fruit[J]. Metabolic Engineering, 59: 76-86. [49] Khan Z, Khan S H, Mubarik M S, et al. 2017. Use of TALEs and TALEN technology for genetic improvement of plants[J]. Plant Molecular Biology Reporter, 35(1): 1-19. [50] Kim J H.2019. Biological roles and an evolutionary sketch of the GRF-GIF transcriptional complex in plants[J]. BMB Reports, 52(4): 227-238. [51] Koonin E V, Makarova K S.2022. Evolutionary plasticity and functional versatility of CRISPR systems[J]. PLoS Biol-ogy, 20(1): e3001481. [52] LeBlanc C, Zhang F, Mendez J, et al. 2018. Increased efficien-cy of targeted mutagenesis by CRISPR/Cas9 in plants using heat stress[J]. The Plant Journal, 93(2): 377-386. [53] Li M Y, Jiao Y T, Wang Y T, et al. 2020b. CRISPR/Cas9-medi-ated VvPR4b editing decreases downy mildew resistance in grapevine (Vitis vinifera L.)[J]. Horticulture Re-search, 7: 149. [54] Li T, Hu J, Sun Y, et al. 2021. Highly efficient heritable ge-nome editing in wheat using an RNA virus and bypass-ing tissue culture[J]. Molecular Plant, 14(11): 1787-1798. [55] Liu X, Wu R, Bulley S M, et al. 2022. Kiwifruit MYBS1-like and GBF3 transcription factors influence l-ascorbic acid biosynthesis by activating transcription of GDP-L-galac-tose phosphorylase 3[J]. New Phytologist, 234(5): 1782-1800. [56] Lowe K, Wu E, Wang N, et al. 2016. Morphogenic regulators Baby boom and Wuschel improve monocot transforma-tion[J]. The Plant Cell, 28(9): 1998-2015. [57] Luo G, Palmgren M.2021. GRF-GIF chimeras boost plant re-generation[J]. Trends in Plant Science, 26(3): 201-204. Ma X, Zhang X, Liu H, et al. 2020. Highly efficient DNA-free plant genome editing using virally delivered CRIS-PR-Cas9[J]. Nature Plants, 6(7): 773-779. [58] Maher M F, Nasti R A, Vollbrecht M, et al. 2020. Plant gene editing through de novo induction of meristems[J]. Na-ture Biotechnology, 38(1): 84-89. [59] Makarova K S, Wolf Y I, Iranzo J, et al. 2020. Evolutionary classification of CRISPR-Cas systems: A burst of class 2 and derived variants[J]. Nature Reviews Microbiolo-gy, 18(2): 67-83. [60] Malabarba J, Chevreau E, Dousset N, et al. 2021. New strate-gies to overcome present CRISPR/Cas9 limitations in apple and pear: Efficient dechimerization and base edit-ing[J]. International Journal of Molecular Sciences, 22(1): 319. [61] Malnoy M, Viola R, Jung M H, et al. 2016. DNA-free geneti-cally edited grapevine and apple protoplast using CRIS-PR/Cas9 ribonucleoproteins[J]. Frontiers in Plant Sci-ence, 7: 1904. [62] Maren N A, Duan H, Da K, et al. 2022. Genotype-indepen-dent plant transformation[J]. Horticulture Research, 9: uhac047. [63] Naim F, Dugdale B, Kleidon J, et al. 2018. Gene editing the phytoene desaturase alleles of Cavendish banana using CRISPR/Cas9[J]. Transgenic Research, 27(5): 451-460. Najera V A, Twyman R M, Christou P, et al. 2019. Applica-tions of multiplex genome editing in higher plants[J]. Current Opinion in Biotechnology, 59: 93-102. [64] Nakajima I, Ban Y, Azuma A, et al. 2017. CRISPR/Cas9-me-diated targeted mutagenesis in grape[J]. PLoS One, 12(5): e0177966. [65] Nishitani C, Hirai N, Komori S, et al. 2016. Efficient genome editing in apple using a CRISPR/Cas9 system[J]. Scien-tific Reports, 6: 31481. [66] Ntui V O, Tripathi J N, Tripathi L.2020. Robust CRISPR/ Cas9 mediated genome editing tool for banana and plan-tain (Musa spp.)[J]. Current Plant Biology, 21: 100128. [67] Omori M, Yamane H, Osakabe K, et al. 2021. Targeted muta-genesis of CENTRORADIALIS using CRISPR/Cas9 system through the improvement of genetic transforma-tion efficiency of tetraploid highbush blueberry[J]. The Journal of Horticultural Science and Biotechnology, 96(2): 153-161. [68] Osakabe Y, Liang Z, Ren C, et al. 2018. CRISPR-Cas9-medi-ated genome editing in apple and grapevine[J]. Nature Protocols, 13(12): 2844-2863. [69] Pan C, Sretenovic S, Qi Y.2021a. CRISPR/dCas-mediated transcriptional and epigenetic regulation in plants[J]. Current Opinion in Plant Biology, 60: 101980. [70] Pan W, Cheng Z, Han Z, et al. 2022. Efficient genetic transfor-mation and CRISPR/Cas9-mediated genome editing of watermelon assisted by genes encoding developmental regulators[J]. Journal of Zhejiang University-SCIENCE B, 23(4): 339-344. [71] Pang H, Yan Q, Zhao S, et al. 2019. Knockout of the S-acyl-transferase gene, PbPAT14, confers the dwarf yellowing phenotype in first generation pear by ABA accumulation[J]. International Journal of Molecular Sciences, 20(24):6347. [72] Pavese V, Moglia A, Abbà S, et al. 2022. First report on ge-nome editing via ribonucleoprotein (RNP) in Castanea sativa Mill[J]. International Journal of Molecular Sci-ences, 23: 5762. [73] Peer R, Rivlin G, Golobovitch S, et al. 2015. Targeted muta-genesis using zinc-finger nucleases in perennial fruit trees[J]. Planta, 241(4): 941-951. [74] Peng A, Chen S, Lei T, et al. 2017. Engineering canker-resis-tant plants through CRISPR/Cas9-targeted editing of the susceptibility gene CsLOB1 promoter in citrus[J]. Plant Biotechnology Journal, 15(12): 1509-1519. [75] Pompili V, Dalla Costa L, Piazza S, et al. 2020. Reduced fire blight susceptibility in apple cultivars using a high-effi-ciency CRISPR/Cas9-FLP/FRT-based gene editing sys-tem[J]. Plant Biotechnology Journal, 18(3): 845-858. [76] Qiu F, Xing S, Xue C, et al. 2021. Transient expression of a TaGRF4-TaGIF1 complex stimulates wheat regenera-tion and improves genome editing[J]. Science China Life Sciences, 65(4): 731-738. [77] Rahman F, Mishra A, Gupta A, et al. 2022. Spatiotemporal regulation of CRISPR/Cas9 enables efficient, precise, and heritable edits in plant genomes[J]. Frontiers in Ge-nome Editing, 4: 870108. [78] Ren C, Guo Y, Kong J, et al. 2020. Knockout of VvCCD8 gene in grapevine affects shoot branching[J]. BMC Plant Bi-ology, 20(1): 47. [79] Ren C, Li H, Liu Y, et al. 2022. Highly efficient activation of endogenous gene in grape using CRISPR/dCas9-based transcriptional activators[J]. Horticulture Research, 9: uhab037. [80] Ren C, Liu X, Zhang Z, et al. 2016. CRISPR/Cas9-mediated efficient targeted mutagenesis in Chardonnay (Vitis vinif-era L.)[J]. Scientific Reports, 6: 32289. [81] Ren C, Liu Y, Guo Y, et al. 2021. Optimizing the CRISPR/ Cas9 system for genome editing in grape by using grape promoters[J]. Horticulture Research, 8(1): 52. [82] Ren F, Ren C, Zhang Z, et al. 2019. Efficiency optimization of CRISPR/Cas9-mediated targeted mutagenesis in grape[J]. Frontiers in Plant Science, 10: 612. [83] Rodrigues S D, Karimi M, Impens L, et al. 2021. Efficient CRISPR-mediated base editing in Agrobacterium spp[J]. Proceedings of the National Academy of Sciences of the USA, 118(2): e2013338118. [84] Savadi S, Mangalassery S, Sandesh M S.2021. Advances in genomics and genome editing for breeding next genera-tion of fruit and nut crops[J]. Genomics, 113(6): 3718-3734. [85] Schröpfer S, Flachowsky H.2021. Tracing CRISPR/Cas12a mediated genome editing events in apple using high- throughput genotyping by PCR capillary gel electropho-resis[J]. International Journal of Molecular Sciences, 22(22): 12611. [86] Shao X, Wu S, Dou T, et al. 2020. Using CRISPR/Cas9 ge-nome editing system to create MaGA20ox2 gene-modi-fied semi-dwarf banana[J]. Plant Biotechnology Journal, 18(1): 17-19. [87] Shin K, Kwon S H, Lee S C, et al. 2021. Sensitive and rapid detection of Citrus Scab using an RPA-CRISPR/Cas12a system combined with a lateral flow Assay[J]. Plants, 10(10): 2132. [88] Singha D L, Das D, Sarki Y N, et al. 2022. Harnessing tissue- specific genome editing in plants through CRISPR/Cas system: current state and future prospects[J]. Planta, 255(1): 28. [89] Sunitha S, Rock C D.2020. CRISPR/Cas9-mediated targeted mutagenesis of TAS4 and MYBA7 loci in grapevine root-stock 101-14[J]. Transgenic Research, 29(3): 355-367. Tang X, Chen S, Yu H, et al. 2021. Development of a gRNA-tRNA array of CRISPR/Cas9 in combination with graft-ing technique to improve gene-editing efficiency of sweet orange[J]. Plant Cell Reports, 40(12): 2453-2456. [90] Tripathi J N, Ntui V O, Ron M, et al. 2019. CRISPR/Cas9 ed-iting of endogenous banana streak virus in the B ge-nome of Musa spp. overcomes a major challenge in ba-nana breeding[J]. Communications Biology, 2: 46. [91] Tripathi J N, Ntui V O, Shah T, et al. 2021a. CRISPR/Cas9- mediated editing of DMR6 orthologue in banana (Musa spp.) confers enhanced resistance to bacterial disease[J]. Plant Biotechnology Journal, 19: 1291-1293. [92] Tripathi L, Ntui V O, Tripathi J N, et al. 2021b. Application of CRISPR/Cas for diagnosis and management of viral dis-eases of banana[J]. Frontiers in Microbiology, 11:609784. [93] Tripathi L, Ntui V O, Tripathi J N.2022. Control of bacterial diseases of banana using CRISPR/Cas-based gene edit-ing[J]. International Journal of Molecular Sciences, 23(7): 3619. [94] Tripathi L, Ntui V O, Tripathi J N.2020. CRISPR/Cas9-based genome editing of banana for disease resistance[J]. Cur-rent Opinion in Plant Biology, 56: 118-126. [95] Tu M, Fang J, Zhao R, et al. 2022. CRISPR/Cas9-mediated mutagenesis of VvbZIP36 promotes anthocyanin accu-mulation in grapevine (Vitis vinifera)[J]. Horticulture Research, 9: uhac022. [96] Varanda C M R, Félix M R, Campos M D, et al. 2021. Plant viruses: From targets to tools for CRISPR[J]. Viruses, 13(1): 141. [97] Varkonyi-Gasic E, Wang T, Cooney J, et al. 2021. Shy Girl, a kiwifruit suppressor of feminization, restricts gynoeci-um development via regulation of cytokinin metabolism and signalling[J]. New Phytologist, 230(4): 1461-1475. [98] Varkonyi-Gasic E, Wang T, Voogd C, et al. 2019. Mutagenesis of kiwifruit CENTRORADIALIS -like genes transforms a climbing woody perennial with long juvenility and ax-illary flowering into a compact plant with rapid terminal flowering[J]. Plant Biotechnology Journal, 17(5): 869-880. [99] Voogd C, Brian L A, Wu R, et al. 2022. A MADS-box gene with similarity to FLC is induced by cold and correlated with epigenetic changes to control budbreak in kiwifruit[J]. New Phytologist, 233(5): 2111-2126. [100] Wan D Y, Guo Y, Cheng Y, et al. 2020. CRISPR/Cas9-mediat-ed mutagenesis of VvMLO3 results in enhanced resis-tance to powdery mildew in grapevine (Vitis vinifera)[J]. Horticulture Research, 7: 116. [101] Wang L, Chen S, Peng A, et al. 2019. CRISPR/Cas9-mediated editing of CsWRKY22 reduces susceptibility to Xan- thomonas citri subsp. citri in Wanjincheng orange (Citrus sinensis (L.) Osbeck)[J]. Plant Biotechnology Reports, 13(5): 501-510. [102] Wang X, Tu M, Wang D, et al. 2018a. CRISPR/Cas9 -mediat-ed efficient targeted mutagenesis in grape in the first generation[J]. Plant Biotechnology Journal, 16(4): 844-855. [103] Wang X, Tu M, Wang Y, et al. 2021. Whole-genome sequenc-ing reveals rare off-target mutations in CRISPR/Cas9- edited grapevine[J]. Horticulture Research, 8(1): 114. [104] Wang Z, Wang S, Li D, et al. 2018b. Optimized paired- sgRNA/Cas9 cloning and expression cassette triggers high-efficiency multiplex genome editing in kiwifruit[J]. Plant Biotechnology Journal, 16(8): 1424-1433. [105] Wu S, Zhu H, Liu J, et al. 2020. Establishment of a PEG-me-diated protoplast transformation system based on DNA and CRISPR/Cas9 ribonucleoprotein complexes for ba-nana[J]. BMC Plant Biology, 20: 425. [106] Xia C, Jiang S, Tan Q, et al. 2022. Chromosomal-level ge-nome of macadamia (Macadamia integrifolia)[J]. Tropi-cal Plants, 1: 3. [107] Xu Y, Zhang L, Lu L, et al. 2022. An efficient CRISPR/Cas9 system for simultaneous editing two target sites in For- tunella hindsii[J]. Horticulture Research, 9: uhac064. [108] Yuan G, Hassan M M, Yao T, et al. 2021. Plant-based biosen-sors for detecting CRISPR-mediated genome engineer-ing[J]. ACS Synthetic Biology, 10(12): 3600-3603. [109] Zhang F, LeBlanc C, Irish V F, et al. 2017. Rapid and efficient CRISPR/Cas9 gene editing in Citrus using the YAO pro-moter[J]. Plant Cell Reports, 36(12): 1883-1887. [110] Zhang S, Wu S, Hu C, et al. 2022a. Increased mutation effi-ciency of CRISPR/Cas9 genome editing in banana by optimized construct[J]. PeerJ, 10: e12664. [111] Zhang Y, Cheng Y, Fang H, et al. 2022b. Highly efficient ge-nome editing in plant protoplasts by ribonucleoprotein delivery of CRISPR-Cas12a nucleases[J]. Frontiers in Genome Editing, 4: 780238. [112] Zhang Y, Zhou P, Bozorov T A, et al. 2021. Application of CRISPR/Cas9 technology in wild apple (Malus sieverii) for paired sites gene editing[J]. Plant Methods, 17(1): 1-9. [113] Zheng J, Meinhardt L W, Goenaga R, et al. 2022. The chromo-some-level rambutan genome reveals a significant role of segmental duplication in the expansion of resistance genes[J]. Horticulture Research, 9: uhac014. [114] Zhou H, Bai S, Wang N, et al. 2020. CRISPR/Cas9-mediated mutagenesis of MdCNGC2 in apple callus and VIGS-me-diated silencing of MdCNGC2 in fruits improve resis-tance to Botryosphaeria dothidea[J]. Frontiers in Plant Science, 11: 1640. [115] Zhu C, Zheng X, Huang Y, et al. 2019. Genome sequencing and CRISPR/Cas9 gene editing of an early flowering Mini-Citrus (Fortunella hindsii)[J]. Plant Biotechnology Journal, 17(11): 2199-2210. |
|
|
|