|
|
Development and Application of Molecular Marker for High Nitrogen Use Efficiency Gene OsTCP19 in Rice (Oryza sativa) |
GUO Fa-Ping, TIAN Min, BAI Da-Song, SHUI Yang, XU Na-Na, YU De-Jin, PENG You-Lin*, HU Yun-Gao* |
Rice Research Institute, Southwest University of Science and Technology, Mianyang 621010, China |
|
|
Abstract Nitrogen is the most important element affecting the yield and quality of rice (Oryza sativa). In the process of rice N-efficient breeding, molecular marker-assisted selection for target genes is helpful for efficient and convenient screening of N-efficient rice varieties. Transcription factor TCP (TEOSINTE BRANCHED1, CYCLOIDEA, PROLIFERATING CELL FACTORS) is involved in the regulation of various developmental processes. OsTCP19 is a newly reported nitrogen-efficient gene with 29 bp deletion in its promoter region. In this study, Pro TCP19-F/R was designed to develop molecular markers to identify rice materials. By comparing and analyzing the OsTCP19 promoter region of 33 reference genomic materials, it was found that 29 bp deletion of OsTCP19 promoter region was found in 'Tumba', 'CG14', 'IR64', 'N22', 'Shuhui 548', 'Basmati' and 'ZH11'. Using 'Shuhui 548' as positive control, OsTCP19 genotypes of 23 rice breeding parents, F1 generation and its paternity, and 'Xikeshui 646' hybrid lines were identified. The results showed that 'Xikeshui1288', 'Kasalath', 'IRAT109' had a deletion of 29 bp, which was consistent with 'Shuhui548' and identified as ostcp19 mutant genotype. The test-cross F1 generation of 'Xikehui1288' and 'Xikehui646' contained 2 strips, which were identified as heterozygous type. Two genotypes could be identified by single plant identification of 'Xikehui646'. Therefore, the marker identification method could identify OsTCP19 genotype and seed purity efficiently and accurately, and the identification method is simple, fast and low cost, which has potential popularization value in rice breeding.
|
Received: 01 September 2022
|
|
Corresponding Authors:
* youlinp@hotmail.com; huyungao@swust.edu.cn
|
|
|
|
[1] 白志刚.2019. 氮肥运筹对水稻氮代谢及稻田氮肥利用率的影响[D]. 博士学位论文, 中国农业科学院, 导师: 金千瑜, pp. 13-21.
(Bai Z G.2019. Effects of N management strategy on N metabolism in rice plant and N use effi-ciency in paddy soil[D]. Thesis for Ph.D., Chinese Acad-emy of Agricultural Sciences, Supervisor: Jin Q Y, pp.13-21.).
[2] 陈涛, 张善磊, 赵凌, 等. 2018. ALS 抑制剂类除草剂抗性水稻功能标记的开发与验证[J]. 中国水稻科学, 32(02):137-145.
(Chen T, Zhang S L, Zhao L, et al. 2018. De-velopment and verification of a functional marker asso-ciated with resistance to ALS inhibitor herbicide[J]. Chi-nese Journal of Rice Science, 32(02): 137-145.)
[3] 陈智慧, 王芳权, 许扬, 等. 2019. 软米基因 Wx-mp 在部分粳稻品种资源中的分布[J]. 植物遗传资源学报, 20(4):975-981.
(Chen Z H, Wang F Q, Xu Y, et al. 2019. The distribution of low amylose content allele Wx-mp in Ja-ponica rice[J]. Journal of Plant Genetic Resources, 20:975-981.)
[4] 董桂春, 于小凤, 赵江宁, 等. 2009. 不同穗型常规籼稻品种氮素吸收利用的基本特点[J]. 作物学报, 35(11): 2091-2100.
(Dong G C, Yu X F, Zhao J N, et al. 2009. Basic characteristics of nitrogen absorption and utilization in conventional Indica rice varieties with different panicles[J]. Acta Agronomica Sinica, 35(11): 2091-2100.)
[5] 方琳, 陶亚军, 张灵, 等. 2020. 水稻氮高效基因 NRT1.1B 功能标记开发和资源筛选[J]. 分子植物育种, 18(23):7795-7800.
(Fang L, Tao Y J, Zhang L, et al. 2020. De-velopment of functional marker and screening resources for high nitrogen use efficiency gene NRT1.1B in rice[J]. Molecular Plant Breeding, 18(23): 7795-7800.)
[6] 梁健, 赵晨, 韩超, 等. 2017. 淮北地区氮高效高产型粳稻品种群体生长特征研究[J]. 中国水稻科学, 31(4): 400-408.
(Liang J, Zhao C, Han C, et al. 2017. Study on pop-ulation growth characteristics of Japonica rice varieties with high nitrogen efficiency and high yield in Huabei region[J]. Chinese Journal of Rice Science, 31(4): 400-408.)
[7] 刘鹏, 焦晓燕, 丁玉川, 等. 2017. 作物氮素高效利用研究进展[J]. 山西农业科学, 45(5): 855-860.
(Liu P, Jiao X Y, Ding Y C, et al. 2017. Research progress on efficient uti-lization of nitrogen in crop[J]. Journal of Shanxi Agri-cultural Sciences, 45(5): 855-860.)
[8] 罗志祥, 苏泽胜, 施伏芝, 等. 2003. 氮肥高效利用水稻育种的现状与展望[J]. 中国农学通报, 19(1): 66-67, 116.
(Luo Z X, Su S Z, Shi F Z, et al. 2003. Current situation and prospects of rice breeding with efficient nitrogen fertilizer utilization[J]. Chinese Agricultural Science Bulletin, 19(1): 66-67, 116.)
[9] 秦娜, 马春业, 朱灿灿, 等. 2019. 谷子氮高效基因型筛选及相关特性分析[J]. 河南农业科学, 48(5): 22-29.
(Qin N, Ma C Y, Zhu C C, et al. 2019. Nitrogen efficient geno-type screening of millet and analysis of related charac-teristics[J]. Journal of Henan Agricultural Sciences, 48(5): 22-29.)
[10] 孙平勇, 张武汉, 张莉, 等. 2021. 水稻氮高效、耐冷基因 Os- GRF4 功能标记的开发及其利用[J]. 作物学报, 47(4):684-690.
(Sun Y P, Zhang W H, Zhang L, et al. 2021. Development and utilization of functional markers of OsGRF4 gene for high nitrogen efficiency and cold toler-ance in rice[J]. Acta Agronomica Sinica, 47(4): 684-690.)
[11] 王芳权, 陈智慧, 许扬, 等. 2019. 水稻广谱抗稻瘟病基因PigmR 功能标记的开发及应用[J]. 中国农业科学, 52(06): 955-967.
(Wang F Q, Chen Z H, Xu Y, et al. 2019. Development and application of the functional marker for the broad-spectrum blast resistance gene PigmR in rice[J]. Scientia Agricultura Sinica, 52(06): 955-967.)
[12] 王军, 赵婕宇, 许扬, 等. 2018. 水稻稻瘟病抗性基因 Bsr-d1 功能标记的开发和利用[J]. 作物学报, 44(11): 1612-1620.
(Wang J, Zhao J Y, Xu Y, et al. 2018. Develop-ment and application of functional markers for rice blast resistance gene Bsr-d1 in rice[J]. Acta Agronomica Sini-ca, 44(11): 1612-1620.)
[13] Fan X R, Tang Z, Tan Y W, et al. 2016. Overexpression of a pH-sensitive nitrate transporter in rice increases crop yields[J]. Proceedings of the National Academy of Sci-ences of the USA, 113(26): 7118-7123.
[14] Fan X R, Xie D, Chen J G, et al. 2014. Over-expression of Os-PTR6 in rice increased plant growth at different nitrogen supplies but decreased nitrogen use efficiency at high ammonium supply[J]. Plant Science, 227(10): 1-11.
[15] Gao Z Y, Wang Y F, Chen G, et al. 2019. The indica nitrate re-ductase gene OsNR2 allele enhances rice yield potential and nitrogen use efficiency[J]. Nature Communications,10: 5207.
[16] Guo J H, Liu X J, Zhang Y, et al. 2010. Significant acidification in major Chinese croplands[J]. Science, 327(5968):1008-1010.
[17] Hu B, Wang W, Ou S J, et al. 2015. Variation in NRT1.1B con-tributes to nitrate-use divergence between rice subspe-cies[J]. Nature Genetics, 47(7): 834-838
[18] Huang X H, Kurata N, Wei X H, et al. 2012. A map of rice ge-nome variation reveals the origin of cultivated rice[J]. Nature, 490(7421): 497-501.
[19] Ju J, Yamamoto Y, Wang Y L, et al. 2006. Genotypic differ-ences in grain yield, and nitrogen absorption and utilization in recombinant inbred lines of rice under hydropon-ic culture[J]. Soil Science and Plant Nutrition, 52(3):321-330.
[20] Li S, Tian Y H, Wu K, et al. 2018. Modulating plant growth- metabolism coordination for sustainable agriculture[J]. Nature, 560(7720): 595-600.
[21] Li X R, Yu J M.2021. Retrofitting elite cultivars with an an-cestral allele for sustainable agriculture[J]. Science Chi-na Life Sciences, 64(6): 1029-1030.
[22] Lin C M, Koh S, Stacey G, et al. 2000. Cloning and function-al characterization of a constitutively expressed nitrate transporter gene, OsNRT1, from rice[J]. Plant Physiolo-gy, 122(2): 379-388.
[23] Liu X Q, Huang D M, Tao J Y, et al. 2014. Identification and functional assay of the interaction motifs in the partner protein OsNAR2.1 of the two-component system for high-affinity nitrate transport[J]. New Phytologist, 204(1): 74-80.
[24] Liu Y Q, Wang H R, Jiang Z M, et al. 2021. Genomic basis of geographical adaptation to soil nitrogen in rice[J]. Na-ture, 590(7847): 600-605.
[25] Manassero N G, Uberti V I L, Welchen E, et al. 2013. TCP transcription factors: Architectures of plant form[J]. Bio-molecular Concepts, 4(2): 111-127.
[26] Qin P, Lu H W, Du H L, et al. 2021. Pan-genome analysis of 33 genetically diverse rice accessions reveals hidden ge-nomic variations[J]. Cell, 184(13): 3542e-3558e.
[27] Sharma R, Kapoor M, Tyagi A K, et al. 2010. Comparative transcript profiling of TCP family genes provide insight into gene functions and diversification in rice and Arabi- dopsis[J]. Journal of Plant Biochemistry and Biotechnol-ogy, 1(1): 24-38.
[28] Stevens C J.2019. Nitrogen in the environment[J]. Science, 363(6427): 578-580.
[29] Sun H Y, Qian Q, Wu K, et al. 2014. Heterotrimeric G pro-teins regulate nitrogen-use efficiency in rice[J]. Nature Genetics, 46(6): 652-656.
[30] Tang W J, Ye J, Yao X M, et al. 2019. Genome-wide associat-ed study identifies NAC42-activated nitrate transporter conferring high nitrogen use efficiency in rice[J]. Nature Communications, 10: 5279.
[31] Wu J, Zhang Z S, Xia J Q, et al. 2021. Rice NIN-LIKE PRO-TEIN 4 plays a pivotal role in nitrogen use efficiency[J]. Plant Biotechnology Journal, 19(3): 448-461.
[32] Wu K, Wang S S, Song W Z, et al. 2020. Enhanced sustain-able green revolution yield via nitrogen-responsive chro-matin modulation in rice[J]. Science, 367: eaaz2046.
[33] Yu J, Xuan W, Tian Y L, et al. 2021. Enhanced OsNLP4 -Os-NiR cascade confers nitrogen use efficiency by promot-ing tiller number in rice[J]. Plant Biotechnology Jour-nal, 19(1): 167-176.
[34] Zhang J Y, Liu Y X, Zhang N, et al. 2019. NRT1.1B is associat-ed with root microbiotic composition and nitrogen use in field-grown rice[J]. Nature Biotechnology, 37: 676-684.
[35] Zhang Y J, Tan L B, Zhu Z F, et al. 2015. TOND1 confers tol-erance to nitrogen deficiency in rice[J]. Plant Journal, 81(3): 367-376. |
[1] |
SHI Hai-Lin,ZHANG Dan-Dan,GAO Qian,YOU Yuan-Yuan,SHU Jin-Shuai,WANG Shuai,
,MAO Xiu-Jie,. Fine Mapping of Inflorescence Pruning Node Gene in Tomato (Solanum lycopersicum) Based on BSA-seq Technique[J]. 农业生物技术学报, 2023, 31(7): 1357-1367. |
|
|
|
|