|
|
Mining and Verification of SNP Loci of Ustilago esculenta Used for Grey Jiaobai Identification |
WU Jun-Cheng1,*, GE Xin-Tao2,*, YANG Meng-Fei3, YE Zi-Hong1, XIA Wen-Qiang1, TANG Jin-Tian1, YU Xiao-Ping1, ZHANG Shang-Fa3, ZHANG Ya-Fen1,** |
1 Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine/College of Life Sciences, China Jiliang University, Hangzhou 310018, China; 2 Hangzhou C&Y Pollen Pharmaceutical Co., Ltd., Hangzhou 310018, China; 3 Jinghua City Academy of Agricultural Sciences, Jinghua 321017, China |
|
|
Abstract Jiaobai as an important aquatic vegetable in China, nearly 20% of the grey Jiaobai in the field has a serious impact on its yield. Previous research showed that the formation of 2 phenotypes of normal Jiaobai and grey Jiaobai in the field was closely related to the differentiation of MT and T type strains of Ustilago esculenta. Grey Jiaobai is caused by the infection of Zizania latifolia by T type strain of U. esculenta. Therefore, 129 494 SNP loci with difference between MT and T-type strains was obtained in this study, by resequencing, SNP calling and SNP filtration. After that, 647 specific SNP loci with specificity of T type of strain were screened by Hardy-Weinberg equilibrium test strategy and short fragment sieving. Finally, based on the 48 loci selected by randomization principle, 8 loci with high accuracy were screened by allele specific PCR (AS-PCR) with designed specific primers for field test. The results showed that the occurrence ratio of grey Jiaobai could be reduced 37.59% after eliminating the seedlings with positive identification results using the combination of the selected 8 specific loci to identify the T-type strain. This research provides technical support for further improving the purity of seedlings in improved seed breeding and subsequent seedling quality detection.
|
Received: 16 January 2022
|
|
Corresponding Authors:
**zyfzjhzyh@163.com
|
About author:: * These authors contributed equally to this work |
|
|
|
[1] 曹乾超, 张雅芬, 崔海峰, 等. 2015. 菰黑粉菌分离方法的研究[J]. 长江蔬菜, 22: 195-197. (Cao Q C, Zhang Y F, Cui H F, et al.2015. Study on isolation method of Ustilago esculenta[J]. Journal of Changjiang Vegetables, 22: 195-197.) [2] 曹乾超, 张雅芬, 崔海峰, 等. 2016. 菰黑粉菌的研究进展[J]. 长江蔬菜, 06: 25-29. (Cao Q C, Zhang Y F, Cui H F, et al. 2016. Research progress of Ustilago esculenta[J]. Journal of Changjiang Vegetables, (06): 25-29.) [3] 方炜. 2002. 林木种苗质量检测的现状与对策[J]. 福建林业科技, 29(1): 69-71. (Fang W.2002. Present situation and countermeasures of forest seedling quality testing[J]. Fujian Forestry Science and Technology, 29(1): 69-71.) [4] 葛鑫涛, 翁丽青, 郑春龙, 等. 2020. 双季茭白中菰黑粉菌遗传分化研究[J]. 植物生理学报, (23): 21-23. (Ge X T, Wen L Q, Zheng C R, et al. 2020. Study on genetic diversity of Ustilago esculenta in different double season varieties of Zizania latifolia[J]. Plant Physiology Communications, (23): 21-23.) [5] 郭赛赛. 2020. 茭白黑粉菌交配型基因类型测定和功能分析[D]. 硕士学位论文,浙江大学, 导师: 郭得平, pp. 14. (Guo S S. 2020. Determination of mating gene types and functional analysis of Ustilago esculenta (in Chinese)[D]. Thesis for M.S, Zhejiang University, Supervisor:Guo D P, pp. 14.) [6] 胡美华, 王来亮, 金昌林, 等. 2011. 单季茭白种苗繁育新技术—薹管寄秧育苗法[J]. 长江蔬菜, (23): 21-23. (Hu M H, Wang L L, Jing C L, et al. 2011.(New technology of seedling breeding of single-season Zizania latifolia-tube seedling breeding method[J]. Journal of Changjiang Vegetables, (23): 21-23.) [7] 胡鹏. 2016. 菰黑粉菌T型和MT 型菌株差异性研究及b基因功能分析[D]. 硕士学位论文, 中国计量大学, 导师: 叶子弘, pp. 16-18. (Hu P.2016. Analysis of difference between T and MT strains and b genes function in Ustilago esculenta[D]. Thesis for M.S, China Jiliang University, Supervisor: Ye Z H, pp. 16-18.) [8] 黄家禄. 1989. 茭白雄茭、灰茭的鉴别和防除[J]. 农业科技通讯, 10: 19. (Huang J L. 1989. Identification and control of male and grey of Zizania latifolia[J]. Bulletin of Agricultural Science and Technology, (10): 19.) [9] 康璐瑶, 崔海峰, 张雅芬, 等. 2017. 不同茭白品种中菰黑粉菌的鉴定及ISSR多态性分析[J]. 菌物学报, 36(09): 1210-1221. (Kang L Y, Cui H F, Zhang Y F, et al.2017. Identification and ISSR polymorphism analysis of Ustilago esculenta isolated from Zizania latifolia[J]. Mycosystema, 36(09): 1210-1221.) [10] 柯卫东, 孔庆东. 1996, 菰黑粉菌不同菌株比较研究[J]. 长江蔬菜, 8: 21-24+40. (Ke W D, Kong Q D. 1996. Comparative study on different strains of Ustilago esculenta[J]. Journal of Changjiang Vegetables, 8: 21-24+40. [11] 彭小松, 朱昌兰, 林华, 等. 2012. 利用等位基因特异性PCR检测水稻可溶性淀粉合酶基因的单核苷酸多态性[J]. 江西农业大学学报, 34(6): 1080-1085. (Peng X S, Zhu C L, Ling H, et al.2012. Identification of single nucleotide polymorphism of soluble starch synthase genes of rice with allele-specific PCR[J]. Acta Agriculturae Universitis Jiangxiensis, 34(6): 1080-1085.) [12] 唐立群, 肖层林, 王伟平. 2012. SNP分子标记的研究及其应用进展[J]. 中国农学通报, 28(12): 154-158. (Tang L Q, Xiao C L, Wang W P.2012. Research and application progress of SNP molecular markers[J]. Chinese Agricultural Science Bulletin, 28(12): 154-158.) [13] 谢贻格, 江扬先. 2019. 雄茭和灰茭的发生与防治[J]. 上海蔬菜, 3: 24-25+33. (Xie Y G, Jiang Y X. 2019. Occurrence and control of male Zizania latifolia and gray Zizania latifolia[J]. Shanghai Vegetables, 3: 24-25+33.) [14] 徐晓峰, 闫宁, 张敬泽, 等. 2011. 雄茭, 灰茭, 正常茭形态指标及光合特性研究[J]. 长江蔬菜, 16: 31-33. (Xu X F, Yan N, Zhang J Z, et al.2011. Research on morphological and photosynthetic characteristics of Zizinia latifolia[J]. Journal of Changjiang Vegetables, 16: 31-33.) [15] 闫宁, 薛惠民, 石林豫, 等. 茭白"雄茭"和"灰茭"的形成及遗传特性[J].2013. 中国蔬菜, 16: 35-42. (Yan N, Xue H M, Shi LY, et al. 2013. The growth and heritability of Zizinia latifolia plants infected with sporidial strain of Ustilago esculenta (in Chinese)[J]. China Vegetables, 16: 35-42.) [16] 俞晓平, 李建荣, 施建苗,等. 2003. 水生蔬菜茭白及其无害化生产技术[J]. 浙江农业学报, 15(3): 109-117. (Yu X P, Li J R, Shi J M, et al.2003. Water vegetable Zizania latifolia and its harmless production technology[J]. Acta Agriculturae Zhejiangensis, 15(3): 109-117.) [17] 张微, 冯琳琳, 平昭. 2016. 单核苷酸多态性检测技术研究进展[J]. 生物技术通讯, 27(006): 879-883. (Zhang W, Feng L L, Ping Z.2016. Progress in technologies for single nucleotide polymorphism detection[J]. Letters in Biotechnology, 27(006): 879-883.) [18] 赵建民, 刘宝法, 徐晓飞,等. 2002. 茭白品种提纯复壮与繁育技术[J]. 作物杂志, 3: 22-23. (Zhao J M, Liu B F, Xu X F et al., 2002. Zizania latifolia variety purification rejuvenation and breeding technology[J]. Crop Science, (3): 22-23.) [19] 周惠兴, 王桂英. 1993. 茭白良种繁育技术[J]. 上海蔬菜, 1: 25. (Zhou H X, Wang G Y. 1993. Improved breeding technology of Zizania latifolia[J]. Shanghai Vegetables, 1: 25.) [20] Cavanagh C R, Chao S, Wang S, et al.2013. Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars[J]. Proceedings of the National Academy of Sciencesof the USA, 110(20): 8057-8062. [21] Choi J Y, Yong T K, Ahn J, et al.2012. Integrated allele-specific polymerase chain reaction-capillary electrophoresis microdevice for single nucleotide polymorphism genotyping[J]. Biosensors & Bioelectronics, 35(1): 327-334. [22] Gruber B, Unmack P J, Berry O, et al.2017. Dartr: An r package to facilitate analysis of SNP data generated from reduced representation genome sequencing[J]. Molecular Ecology Resources, 18(3): 691-699. [23] Guo H B, Li S M, Peng J, et al.2007. Zizania latifolia Turcz. cultivated in China[J]. Genetic Resources and Crop Evolution, 54(6): 1211-1217. [24] Guo L, Qiu J, Han Z, et al.A host plant genome (Zizania latifolia) after a century-long endophyte infection.[J]. Plant Journal, 2015, 83(4): 600-609. [25] He Q, Chen M, Lin X, et al.2020. Allele-specific PCR with a novel data processing method based on difference value for single nucleotide polymorphism genotyping of ALDH2 gene[J]. Talanta, 220(5696): 121432. [26] Jan A L, Joost H M, Mosbach A, et al.2017. A gapless genome sequence of the fungus Botrytis cinerea[J]. Molecular Plant Pathology, 18(1): 75-89. [27] Li H, Durbin R.2009. Fast and accurate short read alignment with Burrows-Wheeler transform[J]. Bioinformatics, 25(14): 1754-1760. [28] Li H, Handsaker B, Wysoker A, et al.2009. The sequence alignment/map format and SAMtools[J]. Bioinformatics,25(16): 2078-2079. [29] Liu B, Teng S S, shao Y Q, et al.2016. Characterization of 20 SNP markers in the blood clam (Tegillarca granosa) using T (m)-shift assay[J]. Conservation Genetics Resources, 8(3): 239-242. [30] Lott T J, Scarborough R T.2008. Development of a MLST-biased SNP microarray for Candida albicans[J]. Fungal Genetics & Biology, 45(6): 803-811. [31] Mckenna A, Hanna M, Banks E, et al.2010. The genome analysis toolkit: A map reduce framework for analyzing next-generation DNA sequencing data[J]. Genome Research, 20(9): 1297-1303. [32] Mei W U, Zhen-Wu D U, Liu J N, et al.2010. Improved allele-specific polymerase chain reaction for single nucleotide polymorphism genotyping[J]. Chemical Research in Chinese Universities, 26(002): 259-262. [33] Sun C, Dong Z, Zhao L, et al.2020. The Wheat 660K SNP array demonstrates great potential for marker‐assisted selection in polyploid wheat[J]. Plant Biotechnology Journal, 18(6): 1354-1360. [34] Taira C, Matsuda K, Yamaguchi A, et al.2013. Novel high-speed droplet-allele specific-polymerase chain reaction: Application in the rapid genotyping of single nucleotide polymorphisms[J]. Clinica Chimica Acta, 424: 39-46. [35] Ye Z, Yao P, Zhang Y, et al.2017. Comparative whole-genome analysis reveals artificial selection effects on Ustilago esculenta genome[J]. DNA Research, 24(6): 635-648. [36] Yoshida K, Suga M, Yamasaki H, et al.1996. Hypersensitivity pneumonitis induced by a smut fungus Ustilago esculenta[J]. Thorax, 51(6): 650-1; discussion 656-657. [37] You W, Liu Q, Zou K, et al.2011. Morphological and molecular differences in two strains of Ustilago esculenta[J]. Current Microbiology, 62(1): 44-54. [38] Zhang Y, Cao Q, Hu P, et al.2017. Investigation on the differentiation of two Ustilago esculenta strains-implications of a relationship with the host phenotypes appearing in the fields[J]. BMC Microbiology. 17: 228-236. |
[1] |
ZHANG Yan, CHEN Xiang, ZHOU Zhi-Nan, FU Kai-Bin, WANG Zhong, LI Shi-Jun, YANG Pei-Fang, HUI Mao-Mao. Tissue Expression, Functional Prediction of CYP17A1 and CYP19A1 Genes in Qianbei Ma Goat (Capra hircus) and Its Association Analysis with Litter Size[J]. 农业生物技术学报, 2022, 30(6): 1140-1152. |
|
|
|
|