|
|
Screening and Functional Prediction of Candidate Target Genes Regulated by Transcription Factor StMR1 of Setosphaeria turcica |
YIN Yu-Juan1,*, LI Hai-Xiao1,2,*, WANG Qiu-Yue1,2, JIA Hui2, LIU Ning1,2, DONG Jin-Gao1,2,**, CAO Zhi-Yan1,2,** |
1 College of Plant Protection, Hebei Agricultural University, Baoding 071000, China; 2 State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Baoding 071000, China |
|
|
Abstract Setosphaeria turcica melanin regulation factor 1 (StMR1) is a melanin transcriptional regulatory factor with a double zinc finger domain in Setosphaeria turcica, which affects the growth, metabolism and pathogenicity by regulating gene expression. Therefore, it is very important to elucidate the regulation mode of this transcription factor for analyzing the pathogenic mechanism of S. turcica. The previous study of our group found that after the StMR1 gene was knocked out, the synthesis of melanin in the mutant was blocked, the colony changed from black to gray-white, and the pathogenicity was significantly reduced. In this study, the RNA sequence (RNA-seq) data of wild-type strains of S. turcica and StMR1 gene deletion mutants were used to screen differentially expressed genes (GEGs). Gene Ontology (GO) and KEGG function annotation analysis were conducted for DEGs. The screening obtained 1 383 up-regulated genes and 1 710 down-regulated genes. The down-regulated genes were related to molecular functions, cellular components and biological processes, involving 25 metabolic pathways in 6 categories. Six down-regulated genes, SETTUDRAFT_172122, SETTUDRAFT_168776, SETTUDRAFT_166944, SETTUDRAFT_162601, SETTUDRAFT_131269 and SETTUDRAFT_163249, were analyzed of the expression level by qRT-PCR. The qRT-PCR results showed that the expression levels of the 6 genes were down-regulated in the mutant, suggested that StMR1 might have a positive regulation effect on the genes. Bioinformatics analysis showed that gene SETTUDRAFT_162601 had a typical Catalase domain, and the expression level of SETTUDRAFT_162601 was significantly increased under H2O2 by qRT-PCR (P<0.05), suggested that this gene was related to antioxidant stress. These results provide reference for further study on the mechanism of transcription factor StMR1 regulating pathogenicity, and also provide a reference for analyzing the function of zinc finger transcription factors.
|
Received: 15 March 2022
|
|
Corresponding Authors:
** shmdjg@hebau.edu.cn; caozhiyan@hebau.edu.cn
|
About author:: * These authors contributed equally to this work |
|
|
|
[1] 曹志艳, 贾慧, 朱显明,等. 2011. DHN黑色素与玉米大斑病菌附着胞膨压形成的关系[J]. 中国农业科学, 44(05): 925-932. (Cao Z Y, Jia H, Zhu X M, et al.2011. Relationship between DHN melanin and formation of appressorium turgor pressure of Setosphaeria turcica[J]. Journal of Agricultural Biotechnology, 44(05): 925-932.) [2] 董金皋. 2015. 农业植物病理学[M].北京: 中国农业出版社, pp. 87-92. (Dong J G.2015. Agricultural Plant Pathology[M]. Agricultural Press, Beijing, China, pp. 87-92.) [3] 范永山, 曹志艳, 谷守芹,等. 2004. 不同诱导因素对玉米大斑病菌附着胞产生的影响[J]. 中国农业科学, 37(05): 769-772. (Fan Y S, Cao Z Y, Gu S Q, et al.2004. Effect of different induction factors on appressorium of Setosphaeria turcica[J]. Scientia Agricultura Sinica, 37(05): 769-772. [4] 何玉莲, 李秀辉, 孟庆江, 等. 2015. 三环唑影响玉米大斑病菌致病力的机制[J]. 玉米科学, 23(03): 149-153. (He Y L, Li X H, Meng Q J, et al.2015. Mechanism of tricyclazole effect on Setosphaeria turcica pathogenicity[J]. Journal of Maize Sciences, 23(03): 149-153.) [5] 贾慧, 张泽雪, 刘宁, 等. 2019. 玉米大斑病菌转录因子StMR1的结构特征及其表达模式分析[J]. 农业生物技术学报, 27(10): 1720-1728. (Jia H, Zhang Z X, Liu N, et al.2019. Structural characteristics and expression pattern analysis of transcription factor StMR1 in Setosphaeria turcica[J]. Journal of Agricultural Biotechnology, 27(10): 1720-1728.) [6] 井建玲, 张鹏, 王振宇, 等. 2020. 木薯C2H2型锌指蛋白转录因子家族全基因组鉴定及表达分析[J]. 植物生理学报, 56(12): 2664-2676. (Jing J L, Zhang P, Wang Z Y, et al.2020. Genome-wide identification and expression analysis of the cassava C2H2-type zinc finger protein transcription factor family[J]. Plant Physiology Journal, 56(12): 2664-2676.) [7] 刘杰, 李天娇, 姜玉英, 等. 2021. 2020年我国玉米主要病虫害发生特点[J]. 中国植保导刊, 41(8): 30-35. (Liu J, Li T J, Jiang Y Y, et al.2021. Occurrence characteristics of main maize diseases and insect pests in China in 2020[J]. China Plant Protection, 41(8): 30-35.) [8] 田晨菲, 李建华, 王勇. 2020. 植物合成生物学调控元件的研究进展[J]. 植物生理学报, 56(11): 2261-2274. (Tian C F, Li J H, Wang Y, et al.2020. Research advances of regulatory elements in plant synthetic biology[J]. Plant Physiology Journal, 56(11): 2261-2274.) [9] 赵晨光, 张娜, 温晓蕾, 等. 2022. 小麦与叶锈病菌互作过程中转录因子基因TaNAC35的功能分析[J]. 农业生物技术学报, 30(01): 15-24. (Zhao C G, Zhang N, Wang X L, et al.2022. Functional analysis of transcription factor gene TaNAC35 in the interaction between wheat (Triticum aestivum) and Puccinia triticina[J]. Journal of Agricultural Biotechnology, 30(01): 15-24.) [10] 钟婵娟, 彭伟业, 王冰, 等. 2020. 植物逆境响应相关的C2H2型锌指蛋白研究进展[J]. 植物生理学报, 56(11): 2356-2366. (Zhong C J, Peng W Y, Wang B, et al.2020. Research progress on C2H2 zinc finger proteins related to plant stress response[J]. Plant Physiology Journal, 56(11): 2356-2366.) [11] Abera W, Shimelis H, Derera J, et al.2015. Northern leaf blight response of elite maize inbred lines adapted to the mid-altitude sub-humid tropics[J]. Cereal Research Communications, 44(1): 141-152. [12] Brown D W, Lee S H, Kim L H, et al.2015. Identification of a 12-gene fusaric acid biosynthetic gene cluster in Fusarium species through comparative and functional genomics[J]. Molecular Plant Microbe Interactions, 28(3): 319-332. [13] Cao H J, Huang P Y, Yan Y X, et al.2018. The basic helix-loop-helix transcription factor Crf1 is required for development and pathogenicity of the rice blast fungus by regulating carbohydrate and lipid metabolism[J]. Environmental Microbiology, 20(9): 3427-3441. [14] Carrillo A J, Schacht P, Cabrera I E, et al.2017. Functional profiling of transcription factor genes in Neurospora crassa[J]. G3 (Bethesda, Md.), 7(9): 2945-2956. [15] Cho Y, Srivastava A, Ohm RA, et al.2012. Transcription factor Amr1 induces melanin biosynthesis and suppresses virulence in Alternaria brassicicola[J]. PLoS Pathogens, 8(10): e1002974. [16] Dong J G, Fan Y S, Gui X Met al.2008. Geographic distribution and genetic analysis of physiological races of Setosphaeria turcica in northern China[J]. American Journal of Agricultural and Biological Sciences, 3(1): 389-398. [17] Eliahu N, Igbaria A.2007. Melanin biosynthesis in the maize pathogen Cochliobolus heterostrophus depends on two mitogen-activated protein Kinases, Chk1 and Mps1, and the transcription factor Cmr1[J]. Eukaryotic Cell. 6(3): 421-429. [18] Fetzner R, Seither K, Wenderoth M, et al.2014. Alternaria alternata transcription factor CmrA controls melanization and spore development[J]. Microbiology, 160(Pt 9): 1845-1854. [19] Hughes T R, de Boer C G.2013. Mapping yeast transcriptional networks[J]. Genetics, 195(1): 9-36. [20] Macheleidt J, Mattern D J, Fischer J, et al.2016. Regulation and role of fungal secondary metabolites[J]. Annual Review of Genetics, 50: 371-392. [21] Motoyama T.2020. Secondary metabolites of the rice blast fungus Pyricularia oryzae: Biosynthesis and biological function[J]. International Journal of Molecular Sciences, 21(22): 8698. [22] Seo H, Kang S, Park Y S, et al.2019. The role of zinc in gliotoxin biosynthesis of Aspergillus fumigatus[J]. International Journal of Molecular Sciences, 20(24): 6192. [23] Wang Z W, Zhou Q, Li Y D, et al.2018. iTRAQ-based quantitative proteomic analysis of conidia and mycelium in the filamentous fungus Metarhizium robertsii[J]. Fungal Biology, 122(7): 651-658. [24] Weirauch M T, Hughes T R.2011. A catalogue of eukaryotic transcription factor types, their evolutionary origin, and species distribution[J]. Sub-cellular Biochemistry, 52:25-73. [25] Zhang Z X, Jia H, Liu N, et al.2022. The zinc finger protein StMR1 affects the pathogenicity and melanin synthesis of Setosphaeria turcica and directly regulates the expression of DHN melanin synthesis pathway genes[J]. Molecular Microbiology, 117(2): 261-273. [26] Zhou Y., Yang L., Wu M., Chen W., Li G., Zhang J.2017. A single-nucleotide deletion in the transcription factor gene bcsmr1 causes sclerotial-melanogenesis deficiency in Botrytis cinerea[J]. Frontiers In Microbiology. 8, 2492. |
|
|
|