|
|
Genetic Variation Analysis of Exon3 of MHC Gene and Its Correlation with Growth Performance in Two Goat (Capra hircus) Breeds |
SUN Wang-Bin1,*, WANG Wei-Ping1, HUANG Yan2, SONG Xiao-Yue1, ZHANG Di1, SHANG Jia-Le1, ZHANGSUN Wei-Guang1, LI Zeng-Hui1 |
1 Shaanxi Province Engineering & Technology Research Center of Shanbei Cashmere Goats, Yulin University, Yulin 719000, China; 2 Yuyang District Animal Disease Prevention and Control Center, Yulin 719000, China |
|
|
Abstract Shanbei white cashmere goat (Capra hircus) and Ziwuling black goat are the main goats in the northern of Shaanxi, but their growth performance needs to be improved. Especially, the population size of the latter decreased sharply, so it is urgent to determine the genetic variation of its population. Genetic variation of major histocompatibility complex (MHC) genes can be used to evaluate population genetic diversity, and MHC genes are also associated with body size traits of domestic animals. The aim of this study was to investigate the polymorphism of major histocompatibility complex (MHC) gene exon3 in Shanbei white cashmere goat and Ziwuling black goat, and to evaluate the population development trend of Ziwuling black goat, and to
explore the correlation between MHC gene and growth performance or cashmere traits in Shanbei white
cashmere goats. In this study, the genetic variation of exon3 of MHC gene of 600 Shanbei white cashmere
goats and 30 Ziwuling black goats was analyzed by using high-throughput sequencing method, and the
correlation between MHC gene and growth performance was studied. Exon3 sequences of 2 MHC genes were
obtained, including 4 DQA1 alleles and 22 DQB2 alleles. The heterozygosity and polymorphism of Ziwuling
black goat were low, and the population development trend was not optimistic, so effective protection
measures should be taken. Moreover, Shanbei white cashmere goats had higher polymorphism, the BB
genotype of DQA1 gene was significantly higher than the other 2 genotypes in terms of height at hip cross and
wool length (P=0.035, P=0.021), and the AA genotype had the smallest cashmere fineness (P=0.003). These
alleles could be used as an effective molecular marker for growth performance improvement and ultrafine
cashmere goat breeding, respectively. The results of this study are helpful to promote molecular markerassisted
selection breeding of Shanbei white cashmere goat, and the protection, development and utilization of
Ziwuling black goat germplasm resources.
|
Received: 07 June 2021
|
|
Corresponding Authors:
*ylsunwb@sina.com
|
|
|
|
[1] 黄兰, 刘彬, 康建兵, 等 . 2016. 黔北麻羊 DRB1 基因 Exon3 遗传变异分析[J]. 基因组学与应用生物学, 35(06): 1342-1346. (Huang L, Liu B, Kang J B, et al.2016. Genetic variation in exon3 of DRB1 gene in Qianbei ma goat[J]. Genomics and Applied Biology, 35(06): 1342-1346.) [2] 李洁 .2013. 甘肃高山细毛羊微卫星亲子鉴定及 DRB1 基因第 3 外显子多态性研究[D]. 硕士学位论文, 甘肃农业大学, 导师: 罗玉柱, pp. 8-46. (Li J.2013. Paternity test with microsatellite and DRB1 exon3 polymorphism in Gansu Alpine Merino[D]. Thesis for M.S., Gansu Agricultural University, Supervisor: Luo Y Z, pp. 8-46.) [3] 刘彬, 罗卫星, 蔡惠芬, 等 . 2014. 贵州白山羊 GOLA-DQA1 基因多态性及生物信息学分析[J]. 生物技术, 24(03): 44-47. (Liu B, Luo W X, Cai H F, et al.2014. GOLA-DQA1 gene polymorphism and bioinformatics analysis in Guizhou White goat[J]. Biotechnology, 24(03): 44-47.) [4] 刘彦, 张旭, 郑策, 等 . 2013. 中国毛皮动物养殖业取皮屠宰现状调查[J]. 中国畜牧业, 22(04): 32-35. (Liu Y, Zhang X, Zheng C, et al.2013. Investigation on the current sit uation of fur culturing and slaughtering in China[J]. Chi nese Animal Husbandry, 22(04): 32-35.) [5] 马彩英, 陈玉林, 冯喜波, 等 . 2019. 舍饲后陕北白绒山羊主要经济性状遗传力估计[J]. 家畜生态学报, 40(07): 75-77. (Ma C Y, Chen Y L, Feng X B, et al.2019. Estima tion on heritability capacity of major economic traits of Shaanbei white cashmere goat after indoor feeding[J]. Journal of Domestic Animal Ecology, 40(07): 75-77.) [6] 宋晓育, 张小丽, 马小军, 等 . 2015. 甘肃高山细毛羊和小尾寒羊 DQB1 基因第 2 外显子多态性及其与乳房炎相关性[J]. 江苏农业学报 , 31(5): 1070-1077. (Song X Y, Zhang X L, Ma X J, et al.2015. The polymorphism of exon2 of DQB1 gene and its correlation with mastitis in Gansu alpine fine wool sheep and small tail Han sheep[J]. Journal of Jiangsu Agriculture, 31(5): 1070-1077.) [7] 宋晓越, 刘锦旺, 史雷, 等 . 2020a. 陕北白绒山羊 DRB1 基因多态性与球虫病的相关性分析[J]. 基因组学与应用生物学 , 39(6): 2507-2512. (Song X Y, Liu J W, Shi L, etal.2020a. Correlation analysis of DRB1 gene polymorphism and coccidiosis in Shanbei white cashmere goat[J]. Genomics and Applied Biology, 39(6): 2507-2512.) [8] 宋晓越, 史雷, 刘锦旺, 等 . 2019. 陕北白绒山羊 MHC-DQB2基因外显子 2 多态性与球虫易感性的相关分析[J]. 农业生物技术学报, 27(09): 1629-1636. (Song X Y, Shi L, Liu J W, et al.2019. Association between polymorphism of MHC-DQB2 gene exon2 and susceptibility to coccidia in Shanbei white cashmere goats (Capra hircus)[J]. Journal of Agricultural Biotechnology, 27(09): 1629-1636.) 宋晓越, 朱海鲸, 刘锦旺, 等 . 2020b. 陕北白绒山羊 DRB1 基因外显子 2 遗传变异分析[J]. 基因组学与应用生物学, 39(01): 64-69. (Song X Y, Zhu H J, Liu J W, et al.2020b. Genetic variation in exon2 of DRB1 gene in Shanbei white cashmere goat[J]. Genomics and Applied Biology, 39(01): 64-69.) [9] 宋宜泽, 赵孟丽, 郝志云, 等 . 2021. KRTAP36-1 基因在子午岭黑山羊中的鉴定及其与羊绒性状的关联分析[J]. 中国农业大学学报, 26(02): 79-87. (Song Y Z, Zhao M L, Hao Z Y, et al.2021. Identification of caprine KRTAP36-1 and its association with cashmere traits in Ziwuling black goats[J]. Journal of China Agricultural University, 26(02): 79-87.) [10] 王继卿, 谢文章, 苟占发, 等 . 2016. 环县绒山羊羔羊冬季舍饲育肥效果[J]. 草业科学, 33(11): 2345-2352. (Wang J Q, Xie W Z, Gou Z F, et al.2016. Effect of feeding in winter on cashmere goats in Huanxian county[J]. Pratacultural Science, 33(11): 2345-2352.) [11] 杨易, 徐金瑞, 郑玉才, 等 . 2007. 金堂黑山羊 GoLA-DRB3 基因多态性与体尺性状相关性研究[J]. 西北农业学报, 16(2): 10-12. (Yang Y, Xu J R, Zheng Y C, et al. 2007.Study on relationship between polymorphisms of GoLA-DRB3 exon2 and economical traits of Jintang black goats[J]. Acta Agriculturae Boreali occidentalis Sinica, 16(2): 10-12.) [12] 岳燕, 马小军, 罗秀刚, 等 . 2012. 河西绒山羊 MHC-DQB2 基因第 3 外显子多态性及其与流产性状的关联分析[J]. 甘肃农业大学学报, 47(6): 6-12. (Yue Y, Ma X J, Luo X G, et al.2012. The polymorphism of the third exon of MHC-DQB2 gene and its correlation with abortion in Hexi Goat[J]. Journal of Gansu Agricultural University, 47(6): 6-12.) [13] 张天能 .2016. 子午岭黑山羊育肥效果及 WFIKKN2 基因多态性分析[D]. 硕士学位论文, 甘肃农业大学, 导师: 罗玉柱 , pp. 36-55. (Zhang T N.2016. Finishing performance and polymorphism of WFIKKN2 gene in Ziwuling black goats[D]. Thesis for M.S., Gansu Agricultural University, Supervisor: Luo Y Z, pp. 36-55.) [14] Ballingall K T, Lantier I, Todd H, et al.2018. Structural and functional diversity arising from intra-and inter-haplotype combinations of duplicated DQA and B loci within the ovine MHC[J]. Immunogenetics, 70(4): 257-269. [15] Brambilla A, Keller L, Bassano B, et al.2018. Heterozygosity-fitness correlation at the major histocompatibility complex despite low variation in Alpine ibex (Capra ibex)[J]. Evolutionary applications, 11(5): 631-644. [16] Cinar M U, Mousel M R, Herrmann-Hoesing L M, et al.2016. Ovar-DRB1 haplotypes *2001 and *0301 are associated with sheep growth and ewe lifetime prolificacy[J]. Gene, 595(2): 187-192. [17] Corley M M, Savage A.2015. Savage. Expression of the DRB1*1101 allele in meat goats pasture exposed to Haemonchus contortus[J]. Journal of Agricultural Science, 7(11): 19-27. [18] Cruz F M, Colbert J D, Merino E, et al.2017. The biology and underlying mechanisms of cross-presentation of exogenous antigens on MHC-I molecules[J]. Annual review of Immunology, 35: 149-176. [19] Hermann G, Manzoor R M, Andreas W K, et al.2006. OLA-DRB1 microsatellite variants are associated with ovine growth and reproduction traits[J]. Genetics Selection Evolution, 38(4): 431-444. [20] Peng F, Ballare K M, Woodard S H, et al.2021. What evolutionary processes maintain MHC Ⅱ β diversity within and among populations of stickleback?[J]. Molecular Ecology, 30(7): 1659-1671. [21] Usman G M, Li B, An B, et al.2021. Molecular characterization of MHC classⅠ genes in four species of the family to assess genetic diversity and selection[J]. BioMed Research International, 2021: 1-14. [22] Zhou P, Liu S, Ji N N, et al.2020. Association between variant alleles of major histocompatibility complex class Ⅱregulatory genes and nasopharyngeal carcinoma susceptibility[J]. European Journal of Cancer Prevention, 29(6): 531-537. |
|
|
|