|
|
Metabolome Analysis of Effect of Light Intensity Stress on Metabolism of Golden Pompano (Trachinotus ovatus) |
ZHONG Zhi-Ming1,2,*, CHEN Jia-Yu1,2,*, ZHANG Jing1,2, TANG Bao-Gui1,2, YU Fei-Fei1,2,**, LAI Wen-Qi2, ZHU Jie-Xiong2 |
1 South Marine Science and Engineering Guangdong Provincial Laboratory (Zhanjiang), Zhanjiang 524006, China;
2 Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China |
|
|
Abstract Light intensity is an important environmental factor that can affect the physiological behavior and metabolism of cultured varieties in aquaculture. In this study, 3 light intensities were used to stress the golden pompano (Trachinotus ovatus), including low light intensity (10 lx), medium light intensity (about 250 lx), and high light intensity (1250 lx). The metabolome analysis was performed to illustrate the effect of extreme lights on metabolism of T. ovatus. The liquid chromatography-mass spectrometry (LC/MS) was employed to detect the metabolites. The principal component analysis (PCA) and orthogonal projections to latent structures discriminant analysis (OPLS-DA) were used to screen differential metabolites in the liver, and the MetaboAnalyst database was used to analyze metabolism-related pathways. The results showed that compared with the control group, 102 differential metabolites in 10 lx group were found and enriched in 39 metabolic pathways, including β-alanine metabolism, tyrosine metabolism, L-glutamate metabolism and biosynthesis of unsaturated fatty acids. 55 differential metabolites in 1 250 lx group were found and enriched in 27 metabolic pathways, including glucose metabolism, biotin metabolism, thiamine metabolism, pyruvate metabolism and taurine and hypotaurine metabolism. Pathway analysis showed that low light stress inhibited amino acid metabolism and fatty acid synthesis in T. ovatus, and the fish might try to adapt low light environment by reducing movement, enhancing immune function and antioxidant capacity. The high light stress promoted glucose production, inhibited pyruvate metabolism and taurine synthesis, and might affect metabolism and immune function of T. ovatus. This study provides a valuable reference for setting culture parameters in T. ovatus aquaculture.
|
Received: 29 June 2021
|
|
Corresponding Authors:
**yufeifei2000@163.com
|
About author:: * These authors who contributed equally to this work |
|
|
|
[1] 邓琪, 谢斌, 谢明. 2018. 亚精胺在神经系统的调节和保护功能[J]. 中国医学工程, 26(03): 32-35.
(Deng Q, Xie B, Xie M.2018. Neuromodulative and neuroprotective effects of spermidine in nervous system[J]. China Medical Engineering, 26(03): 32-35.)
[2] 黄慧华. 2009. 硫胺素对幼建鲤生长性能、消化吸收功能和免疫功能的影响[D]. 硕士学位论文, 四川农业大学, 导师: 周小秋, pp. 44-49.
(Huang H H.2009. Effects of thiamin on growth performance, functions of digestion, absorption and immune of juvenile Jian carp (Cyprinus carpio var, Jian)[D]. Thesis for M.S., Sichuan Agricultural University, Suppervisor: Zhou X Q, pp. 44-49.)
[3] 黄建盛, 陈刚, 杨健, 等. 2007. 盐度对卵形鲳鲹幼鱼生长及能量收支的影响[J]. 广东海洋大学学报, (04): 30-34.
(Huang J S, Chen G, Yang J, et al. 2007. Effect of salinity on energy budget of Trachinotus ovatus juveniles[J]. Journal of Guangdong Ocean University, (04): 30-34.)
[4] 李金兰, 陈刚, 张健东, 等. 2014. 温度、盐度对卵形鲳鲹呼吸代谢的影响[J]. 广东海洋大学学报, 34(01): 30-36.
(Li J L, Chen G, Zhang J D, et al.2014. Effects of temperature and salinity on the respiratory metabolism of derbio (Trachinotus ovatus L.)[J]. Journal of Guangdong Ocean University, 34(01): 30-36.)
[5] 李琪. 2020. 冷驯化下中缅树鼩白色脂肪组织和褐色脂肪组织的代谢组学研究[D]. 硕士学位论文, 云南师范大学, 导师: 王政昆, pp. 5.
(Li Q.2020. Metabonomics study of white adipose tissue and brown adipose tissue in tree shrews (Tupaia belangeri) during cold acclimation[D]. Thesis for M.S., Yunnan Nomal University, Suppervisor: Wang Z K, pp. 5.)
[6] 刘波. 2019. 盐度和投喂频率对卵形鲳鲹生长和生理的影响[D]. 硕士学位论文, 上海海洋大学, 导师: 张殿昌, pp. 9-10.
(Liu B.2019. Effect of salinity and feeding frequency on growth and physiology of Trachinotus ovatus)[D]. Thesis for M.S., Shanghai Ocean University, Suppervisor: Zhang D C, pp. 9-10.)
[7] 刘利军, 赵瑾. 2003. L-谷氨酰胺研究进展[J]. 天津化工, (01): 17-20.
(Liu L J, Zhao J. 2003. Advance in studying on L-glutamine[J]. Tianjin Chemical Industry, (01): 17-20.)
[8] 罗辉, 周明瑞, 敬庭森, 等. 2020. 雌、雄卵形鲳鲹肌肉品质评价[J]. 南方水产科学, 16(06): 115-123.
(Luo H, Zhou M R, Jing T S, et al.2020. Evaluation of muscle quality of male and female Trachinotus ovatus[J]. South China Fisheries Science, 16(06): 115-123.)
[9] 罗茵. 2019. 30年卵形鲳鲹选育硕果累累[J]. 海洋与渔业, (12): 58-59.
(Luo Y. 2019. Thirty years of breeding of Trachinotus ovatus[J]. Ocean and Fishery, (12): 58-59.)
[10] 马启伟, 郭梁, 刘波, 等. 2021. 牛磺酸对卵形鲳鲹肠道微生物及免疫功能的影响[J]. 南方水产科学, 17(02): 87-96.
(Ma Q W, Guo L, Liu B, et al.2021. Effect of taurine on intestinal microbes and immune function in golden pompano (Trachinotus ovatus)[J]. South China Fisheries Science, 17(02): 87-96.)
[11] 区又君, 陈世喜, 王鹏飞, 等. 2017. 低氧环境下卵形鲳鲹的氧化应激响应与生理代谢相关指标的研究[J]. 南方水产科学, 13(03): 120-124.
(Ou Y J, Chen S X, Wang P F, et al.2017. Study on oxidative stress response and physiological metabolism related indices of Trachinotus ovatus under hypoxia stress[J]. South China Fisheries Science, 13(03): 120-124.)
[12] 邱丽华, 秦克静, 吴立新, 等. 1999. 光照对大泷六线鱼仔鱼摄食量的影响[J]. 动物学杂志, 34(05): 4-8.
(Qiu L H, Qin K J, Wu L X, et al.1999. The feeding intensity of fat greenling larval under different illumination[J]. Chinese Journal of Zoology, 34(05): 4-8.)
[13] 吴凡. 2016. γ-氨基丁酸和丁酸钠对草鱼生长、抗氧化性能和肠道结构的影响[D]. 硕士学位论文, 华中农业大学, 导师: 谭青松, pp. 15-21.
(Wu F.2016. Effects of dietary gamma aminobutyric acid and sodium butyrate on growth performance, antioxidant status and intestinal structure of grass carp (Ctenopharyngodon ldellus)[D]. Thesis for M.S., Huazhong Agricultural University, Suppervisor: Tan Q S, pp. 15-21.)
[14] 吴雨豪, 马恒甲, 林海涵, 等. 2018. 牛磺酸在水产养殖中的研究进展[J]. 饲料研究, (05): 66-70.
(Wu Y H, Ma H J, Lin H H, et al. 2018. Research progress of taurine in aquaculture[J]. Journal of Feed Research, (05): 66-70.)
[15] 徐贺. 2015. 丙氨酰-谷氨酰胺和γ-氨基丁酸对建鲤生长、免疫和抗低氧胁迫的影响[D]. 硕士学位论文, 吉林农业大学, 导师: 王桂芹, pp. 24-27.
(Xu H.2015. Effect of Ala-Gln and γ-GABA on the growth, and resistance to hypoxia stress of Cyprinus carpio var. jian[D]. Thesis for M.S., Jilin Agricultural University, Suppervisor: Wang G Q, pp. 24-27.)
[16] 许友卿, 李伟峰, 丁兆坤. 2012. 谷氨酰胺对水生动物免疫的影响及机理[J]. 动物营养学报, 24(03): 406-410.
(Xu Y Q, Li W F, Ding Z K.2012. Glutamine on immunity of aquatic animals: Effect and mechanism[J]. Chinese Journal of Animal Nutrition, 24(03): 406-410.)
[17] 许友卿, 易波, 丁兆坤. 2013. 谷氨酰胺对水生动物的抗氧化作用及其机理[J]. 饲料工业, 34(04): 22-24.
(Xu Y Q, Yi B, Ding Z K.2013. Effect of glutamine on the antioxidation of aquatic animals[J]. Feed Industry, 34(04): 22-24.)
[18] 杨洋. 2020. β-丙氨酸对小鼠学习记忆和抗疲劳能力的影响[D]. 硕士学位论文, 合肥工业大学, 导师: 马意龙, pp. 29-30.
(Yang Y.2020. Effects of β-alanine on learning and memory and fatigue resistance in mice[D]. Thesis for M.S., Hefei Polytechnic University, Suppervisor: Ma Y L, pp. 29-30.)
[19] 殷爽. 2019. NMR代谢组学研究牛磺酸对鱼类肝肠组织的代谢影响[D]. 硕士学位论文, 厦门大学, 导师: 沈桂平, pp. 65-68.
(Yin S.2019. Study on the metabolic effect of taurine supplementation on fish liver and intestine by NMR-based metabonomics[D]. Thesis for M.S., Xiamen University, Suppervisor: Shen G P, pp. 65-68.)
[20] 殷艳慧, 蒋万胜, 潘晓赋, 等. 2020. 水产养殖鱼类生长性状研究进展[J]. 中国水产科学, 27(04): 463-484.
(Yin Y H, Jiang W S, Pan X F, et al.2020. Recent progress in growth trait of aquaculture fish[J]. Journal of Fishery Sciences of China, 27(04): 463-484.)
[21] 张凤. 2017. 亚精胺对高温中强度跑台运动小鼠抗氧化能力作用的研究[D]. 硕士学位论文, 新疆师范大学, 导师: 王国元, pp. 27-30.
(Zhang F.2017. Spermidine on the high temperature strength of treadmill study on antioxidant ability of mice[D]. Thesis for M.S., Xinjiang normal university, Suppervisor: Wang G Y, pp. 27-30.)
[22] 赵姝. 2011. 生物素对幼建鲤消化吸收能力、抗氧化能力和免疫功能的影响[D]. 硕士学位论文, 四川农业大学, 导师: 周小秋, pp. 66-71.
(Zhao S.2011. Effects of biotin on digestion and absorption capacity, antioxidant capacity and immune function of Juvenile Jian Carp (Cyprinus carpio var, Jian)[D]. Thesis for M.S., Sichuan Agricultural University, Suppervisor: Zhou X Q, pp. 66-71.)
[23] Cotoia A, Scrima R, Gefter J V, et al.2014. P-Hydroxyphenylpyruvate, an intermediate of the Phe/Tyr catabolism, improves mitochondrial oxidative metabolism under stressing conditions and prolongs survival in rats subjected to profound hemorrhagic shock[J]. PLOS ONE, 9: e90917.
[24] Cowey C B, Walton M J.1989. Fish Nutrition[M]. Academic Press, New York, pp. 259-329.
[25] Figueiredo F, Arago C, Pinto W, et al.2019. Optimizing rearing and welfare in senegalese sole (Solea senegalesensis) broodstock: Effect of ambient light intensity and handling time on stress response[J]. Applied Animal Behaviour Science, 222: 104880.
[26] Konkal P, Ganesh C B.2018. Exposure to low or high light intensity affects pituitary-testicular activity in the fish Oreochromis mossambicus[J]. Aquaculture, 497: 109-116.
[27] Leclercq E, Taylor J F, Sprague M, et al.2011. The potential of alternative lighting systems to suppress preharvest sexual maturation of 1+ Atlantic salmon (Salmo salar) post smolts reared in commercial seacages[J]. Aquacultural Engineering, 4(4): 35-47.
[28] Navarro R D, de Sousa S C, Bizarro Y W S, et al.2015. Effects of photoperiod on somatic growth and gonadal development in male nile tilapia[J]. Acta Scientiarum: Technology, 37(4): 381-385.
[29] Ruchin A B.2020. Effect of illumination on fish and amphibian: Development, growth, physiological and biochemical processes[J]. Reviews in Aquaculture, 13(1): 567-600.
[30] Sangineto M, Villani R, Cavallone F, et al.2020. Lipid metabolism in development and progression of hepatocellular carcinoma[J]. Cancers, 12(6): 1419.
[31] Schnuck J K, Sunderland K L, Kuennen M R, et al.2016. Characterization of the metabolic effect of β-alanine on markers of oxidative metabolism and mitochondrial biogenesis in skeletal muscle[J]. Journal of Exercise Nutrition & Biochemistry, 20(2): 34-41.
[32] Shen G P, Huang Y, Dong J Y, et al.2018. Metabolic effect of dietary taurine supplementation on Nile tilapia (Oreochromis nilotictus) evaluated by NMR-based metabolomics[J]. Journal of Agricultural and Food Chemistry, 66(1): 368-377.
[33] Shen G P, Wang S H, Dong J Y, et al.2019. Metabolic effect of dietary taurine supplementation on grouper (Epinephelus coioides): A 1H-NMR-Based metabolomics study[J]. Molecules, 24(12): 2019.
[34] Sheridan M A.1988. Lipid dynamics in fish: Aspects of absorption, transportation, deposition and mobilization, Comp[J]. Comparative Biochemistry and Physiology. B: Biochemistry and Molecular Biology, 90: 679-690.
[35] Sun L Y, Guo H Y, Zhu C Y, et al.2014. Genetic polymorphism of breeding populations of golden pompano (Trachinotus ovatus)[J]. South China Fisheries Science, 10: 67-71.
[36] Trippel E A, Neil S R E.2003. Effects of photoperiod and light intensity on growth and activity of juvenile haddock (Melanogrammus aeglefinus)[J]. Aquaculture, 217: 633-645.
[37] Volpato L, Duarte C R A, Luchiari A C, 2004. Environmental color affect Nile tilapia reproduction[J]. Brazilian journal of medical and biological research, 37: 479-483.
[38] Vowles A S, Kemp P S.2012. Effects of light on the behaviour of brown trout (Salmo trutta) encountering accelerating flow: Application to downstream fish passage[J]. Ecological Engineering, 47: 247-253.
[39] Wei H, Li H D, Xia Y, et al.2019. Effects of light intensity on phototaxis, growth, antioxidant and stress of juvenile gibel carp (Carassius auratus gibelio)[J]. Aquaculture, 501: 39-47.
[40] Yang H, Jin X, Lam C K, et al.2011. Oxidative stress and diabetes mellitus[J]. Clinical Chemistry & Laboratory Medicine, 49(11): 1773-1782. |
|
|
|