|
|
Molecular Characterization of IL-1RAcP in Snakehead (Channa argus) and Its Immune Response to the Infection with Two Pathogenic Bacteria |
LI Dong-Qi1,2, CUI Zheng-Wei3, ZHAO Fei2,*, DENG Yu-Ting2, TAN Ai-Ping2, HUANG Zhi-Bin2, JIANG Lan2 |
1 National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; 2 Pearl River Fisheries Research Institute/Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs/Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; 3 Key Laboratory of Marine Biotechnology of Fujian Province/Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China |
|
|
Abstract Interleukin-1 receptor accessory protein (IL-1RAcP) is an important molecule involved in the pro-inflammatory cytokine interleukin-1 (IL-1) signal transduction, which plays critical roles in the inflammation, immune response and antimicrobial defense. To explore the mechanism of IL-1RAcP in the fish immune defense response to pathogen infection, the IL-1RAcP gene named shIL-1RAcP of snakehead (Channa argus) was cloned, and its immune response to the infection with 2 pathogenic bacteria and the stimulation with 3 pathogen analogues or recombinant IL-1β protein was preliminarily analyzed. The results showed that the full-length ORF of shIL-1RAcP was 1 848 bp (GenBank No. MW928496), which encoded a putative protein of 615 amino acids. Sequences analysis showed that shIL-1RAcP possessed a typical structural characterization composed of three extracellular Ig-like domains, one transmembrane domain, and one intracellular Toll/IL-1 receptor (TIR) domain. The phylogenetic tree analysis revealed that shIL-1RAcP clustered within a subgroup of other teleost species and shared the closest evolutionary relationship with the IL-1RAcP proteins of Micropterus salmoides and Seriola lalandi. Moreover, qPCR analysis showed that shIL-1RAcP was widely expressed with different expression levels in all tested tissues of healthy snakehead. The highest expression of shIL-1RAcP was in the liver, followed by several immune tissues, including the head kidney, spleen, and truck kidney, whereas the lowest expression was detected in the heart. After infection with Nocardia seriolae or Aeromonas schubertii, the relative expressions of shIL-1RAcP were mainly up-regulated in the head kidney and spleen in vivo at different time points, respectively. Similarly, after stimulation with three pathogen analogues and recombinant shIL-1β protein, the expressions of shIL-1RAcP in head kidney leukocytes in vitro could be induced by lipoteichoic acid (LTA), lipopolysaccharides (LPS), polyinosinic-polycytidylic acid [Poly (I:C)], and recombinant shIL-1β protein. In conclusion, these results illustrated that shIL-1RAcP was involved in the immune defense against the two pathogenic bacteria. Furthermore, this research provides several basic data for further revealing the mechanism of IL-1RAcP in fish species against bacterial infection.
|
Received: 07 May 2021
|
|
Corresponding Authors:
*zhaofei@prfri.ac.cn
|
|
|
|
[1] 常贺, 宋颖, 刘春晓. 2020. IL-1RⅡ和IL-1RAcP重组质粒对大鼠自身免疫性心肌炎的作用及机制[J]. 中国病理生理杂志, 36(10): 1729-1738. (Chang H, Song Y, Liu C X.2020. Effect of recombinant plasmids encoding IL-1RII and IL-1RAcP on rat experimental autoimmune myocarditis and possible mechanism[J]. Chinese Journal of Pathophysiology, 36(10): 1729-1738.) [2] 何山, 谭爱萍, 姜兰, 等. 2019. 四株杂交鳢致病性舒伯特气单胞菌特性及致病性比较[J]. 微生物学通报, 46(10): 2630-2644. (He S, Tan A P, Jiang L, et al.2019. Comparative on characteristics and pathogenicity of four strains of Aeromonas schubertii isolated from snakehead hybrid[J]. Microbiology China, 46(10): 2630-2644.) [3] 刘春, 李凯彬, 王庆, 等. 2012. 杂交鳢(斑鳢♀×乌鳢♂)内脏类结节病病原菌的分离、 鉴定与特性分析[J]. 水产学报, 36(7): 1119-1125. (Liu C, Li K B, Wang Q, et al.2012. Isolation, identification and characterization of Aeromonas schubertii from hybrid snakehead (Channa maculate ♀ ×C. argus ♂)[J]. Journal of Fisheries of China, 36(7): 1119-1125.) [4] 刘付翠, 赵飞, 何山, 等. 2020. 杂交鳢PKCθ基因克隆及其在两种病原菌感染后的表达分析[J]. 基因组学与应用生物学, 39(5): 1990-1998. (Liu F C, Zhao F, He S, et al.2020. Molecular cloning and expression analysis of PKCθ from hybrid snakehead (Channa maculata ♀×C. argus ♂) after infection with two pathogenic bacteria[J]. Genomics and Applied Biology, 39(5): 1990-1998.) [5] 刘付翠, 赵飞, 谭爱萍, 等. 2019. 杂交鳢CmaZAP-70基因的克隆, 表达及其功能分析[J]. 农业生物技术学报, 27(11): 156-166. (Liu F C, Zhao F, Tan A P, et al.2019. Cloning, expression and functional analysis of CmaZAP-70 from hybrid snakehead (Channa maculata ♀×Channa argus ♂)[J]. Journal of Agricultural Biotechnology, 27(11): 156-166.) [6] 王国良, 徐益军, 金珊, 等. 2009. 养殖乌鳢诺卡氏菌病及其病原研究[J]. 水生生物学报, 33(2): 277-283. (Wang G L, Xu Y J, Jin S, et al.2009. Research on the Nocardiosis and pathogen in reared snakehead (Channa argus)[J]. Acta Hydrobiologica Sinica, 33(2): 277-283.) [7] 王鹿, 蔡海峰, 胡万宁. 2014. 白细胞介素1受体辅助蛋白在疾病中的作用研究进展[J]. 中国综合临床, 30(4): 439-441. (Wang L, Cai H F, Hu W N.2014. Research progress on the role of interleukin-1 receptor accessory protein in diseases[J]. Clinical Medicine of China, 30(4): 439-441.) [8] 邢树山, 胡万宁, 赵喜庆, 等. 2013. 白介素1受体辅助蛋白在儿童和成人低级别胶质瘤中的作用[J]. 首都医科大学学报, 34(2): 258-263. (Xing S S, Hu W N, Zhao X Q, et al.2013. Interleukin 1 receptor accessory protein contributes to children and adult low grade gliomas[J]. Journal of Capital Medical University, 34(2): 258-263.) [9] 尹玲玲. 2015. 髓细胞白血病干细胞表面标志蛋白白细胞介素-1辅助蛋白及其在血液系统疾病中的研究进展[J]. 国际输血及血液学杂志, 38(3): 232-235. (Yin L L.2015. Research progress of interleukin-1 receptor accessory protein as a surface marker protein for myelocytic leukemia stem cells in hematology[J]. International Journal of Blood Transfusion and Hematology, 38(3): 232-235.) [10] 赵恺, 尹玲玲, 赵冬梅, 等. 2013. 白血病干细胞的新型标志蛋白IL-1RAP杂交瘤细胞的制备及其分泌单克隆抗体的检测[J]. 中国实验血液学杂志, 21(6): 1390-1393. (Zhao K, Yin L L, Zhao D M, et al.2013. Construction of hybridoma cells with IL1RAP as a new marker for leukemia stem cells and detection of its monoclonal antibody[J]. Journal of Experimental Hematology, 21(6): 1390-1393.) [11] Ali S, Huber M, Kollewe C, et al.2007. IL-1 receptor accessory protein is essential for IL-33-induced activation of T lymphocytes and mast cells[J]. Proceedings of the National Academy of Sciences of the USA, 104(47): 18660-18665. [12] Arend W P, Palmer G, Gabay C.2008. IL‐1, IL‐18, and IL‐33 families of cytokines[J]. Immunological Reviews, 223(1): 20-38. [13] Boraschi D, Italiani P, Weil S, et al.2018. The family of the interleukin-1 receptors[J]. Immunological Reviews, 281(1): 197-232. [14] Chen J L, Chen Z W, Wang W J, et al.2020. Development of DNA vaccines encoding ribosomal proteins (RplL and RpsA) against Nocardia seriolae infection in fish[J]. Fish & Shellfish Immunology, 96(1): 201-212. [15] Chen J L, Li Y Q, Wang W J, et al.2019a. Transcriptome analysis of immune-related gene expression in hybrid snakehead (Channa maculata ♀ × Channa argus ♂) after challenge with Nocardia seriolae[J]. Fish & Shellfish Immunology, 91(8): 476-484. [16] Chen S W, Ma X, Wu D, et al.2019b. Scophthalmus maximus interleukin-1β limits Edwardsiella piscicida colonization in vivo[J]. Fish & Shellfish Immunology, 95(12): 277-286. [17] Cui Z W, Kong L L, Zhao F, et al.2020a. Bacteria-induced IL-1β and its receptors in snakehead (Channa argus): Evidence for their involvement in antibacterial innate immunity[J]. Fish & Shellfish Immunology, 100(5): 309-316. [18] Cui Z W, Kong L L, Zhao F, et al.2020b. Two types of TNF-α and their receptors in snakehead (Channa argus): Functions in antibacterial innate immunity[J]. Fish & Shellfish Immunology, 104(9): 470-477. [19] Dinarello C A.2018. Overview of the IL‐1 family in innate inflammation and acquired immunity[J]. Immunological Reviews, 281(1): 8-27. [20] Eggestøl H Ø, Lunde H S, Knutsen T M, et al.2020. Interleukin-1 ligands and receptors in lumpfish (Cyclopterus lumpus L.): Molecular characterization, phylogeny, gene expression, and transcriptome analyses[J]. Frontiers in Immunology, 11(4): 502. [21] Fan Y, Li S, Qi J, et al.2010. Cloning and characterization of typeⅡ interleukin-1 receptor cDNA from Japanese flounder (Paralichthys olivaceus)[J]. Comparative Biochemistry and Physiology Part B, 157(1): 59-65. [22] Gao J, Jiang X, Wang J, et al.2019. Phylogeny and expression modulation of interleukin 1 receptors in grass carp (Ctenopharyngodon idella)[J]. Developmental & Comparative Immunology, 99(10): 103401. [23] Greenfeder S A, Nunes P, Kwee L, et al.1995. Molecular cloning and characterization of a second subunit of the interleukin 1 receptor complex[J]. Journal of Biological Chemistry, 270(23): 13757-13765. [24] Günther S, Deredge D, Bowers A L, et al.2017. IL-1 family cytokines use distinct molecular mechanisms to signal through their shared co-receptor[J]. Immunity, 47(3): 510-523. [25] Herath H M, Elvitigala D A, Godahewa G I, et al.2016. Molecular characterization and comparative expression analysis of two teleostean pro-inflammatory cytokines, IL-1β and IL-8, from Sebastes schlegeli[J]. Gene, 575(2): 732-742. [26] Hong S, Zou J, Crampe M, et al.2001. The production and bioactivity of rainbow trout (Oncorhynchus mykiss) recombinant IL-1β[J]. Veterinary Immunology and Immunopathology, 81(1-2): 1-14. [27] Jiang S, Zhang D, Li J, et al.2008. Molecular characterization, recombinant expression and bioactivity analysis of the interleukin-1β from the yellowfin sea bream, Acanthopagrus latus (Houttuyn)[J]. Fish & Shellfish Immunology, 24(3): 323-336. [28] Lion E, Anguille S, Berneman Z N, et al.2011. Poly (I: C) enhances the susceptibility of leukemic cells to NK cell cytotoxicity and phagocytosis by DC[J]. PLOS ONE, 6(6): e20952. [29] Livak K J, Schmittgen T D.2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method[J]. Methods, 25(4): 402-408. [30] Lu D Q, Bei J X, Feng L N, et al.2008. Interleukin-1β gene in orange-spotted grouper, Epinephelus coioides: Molecular cloning, expression, biological activities and signal transduction[J]. Molecular Immunology, 45(4): 857-867. [31] Lucia N V, Nicole S, James C W, et al.2012. Roles of inflammatory caspases during processing of zebrafish interleukin-1β in Francisella noatunensis infection[J]. Infection & Immunity, 80(8): 2878-2885. [32] Palomo J, Dietrich D, Martin P, et al.2015. The interleukin (IL)-1 cytokine family-balance between agonists and antagonists in inflammatory diseases[J]. Cytokine, 76(1): 25-37. [33] Percy M G, Gründling A.2014. Lipoteichoic acid synthesis and function in gram-positive bacteria[J]. Annual Review of Microbiology, 68(5): 81-100. [34] Simpson B W, Trent M S.2019. Pushing the envelope: LPS modifications and their consequences[J]. Nature Reviews Microbiology, 17(7): 403-416. [35] Sims J E, Smith D E.2010. The IL-1 family: Regulators of immunity[J]. Nature Reviews Immunology, 10(2): 89-102. [36] Stansberg C, Subramaniam S, Collet B, et al.2005. Cloning of the Atlantic salmon (Salmo salar) IL-1 receptor associated protein[J]. Fish & Shellfish Immunology, 19(7): 53-65. [37] Yang Q, Chu Q, Zhao X, et al.2017. Characterization of IL-1β and two types of IL-1 receptors in miiuy croaker and evolution analysis of IL-1 family[J]. Fish & Shellfish Immunology, 63(4): 165-172. |
|
|
|