|
|
Meta-analysis of QTL and Prediction of Candidate Genes for Water-Soluble Carbohydrate Content in Wheat (Triticum aestivum) Stem |
TIAN Tian1,2, LIU Yuan2, ZHANG Pei-Pei1, CHEN Tao2, WANG Cai-Xiang2, CHENG Hong-Bo2, LI Meng-Fei1,2, YANG De-Long1,2,* |
1 Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, China; 2 College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China |
|
|
Abstract Water-soluble carbohydrate (WSC) reserved in wheat stems is one of the important carbon sources for grain filling, and its inheritance is controlled by polygenes. It is an effective way for wheat molecular genetic improvement to explore the major QTL underlying WSC content through meta-analysis. In this study the bioinformatics strategy was used to integrate, and meta-analyze the previously reported 239 QTLs that involved in stem WSC content from different genetic populations in wheat, based on a high-density genetic map as a reference map. A consensus genetic map for stem WSC QTL was established, and a total of 39 meta QTLs (MQTL) which has the minimum confidence interval of 0.50 cM.These MQTLs were mainly distributed on chromosomes 1A, 2B, 2D, 3A, 3B, 4A, 4B, 6A, 6B, 7B and 7D, each of which carried 1 to 2 QTL clusters. In the marker interval of Eps-1Am~Xgwm99 on chromosome 1A, seven candidate genes related to stem WSC content were predicted. This study provides a reference for further shortening the confidence interval QTL wheat stem WSC content and QTL molecular marker-assisted selection breeding.
|
Received: 23 October 2020
Published: 01 May 2021
|
|
Corresponding Authors:
*yangdl@gsau.edu.cn
|
|
|
|
[1] 宝华宾, 梁帅强, 吕远大, 等. 2016. 玉米籽粒蛋白含量Meta-QTL及候选基因分析[J]. 江苏农业学报, 32(4): 736-745. (Bao H B, Liang S Q, Lv Y D, et al.2016. Analysis of meta-QTL and candidate genes related to protein concentration in maize grain[J]. Jiangsu Journal of Agricultural Sciences, 32(4): 736-745.) [2] 郭书磊, 张君, 齐建双, 等. 2018. 玉米叶形相关性状的Meta-QTL及候选基因分析[J]. 植物学报, 53(4): 100-114. (Guo S L, Zhang J, Qi J S, et al.2018. Analysis of meta-quantitative trait loci and their candidate genes related to leaf shape in maize[J]. Bulletin of Botany, 53(4): 100-114.) [3] 胡雅君. 2016. 小麦花后不同器官WSC积累转运相关性状QTL定位及元分析[D]. 硕士学位论文, 甘肃农业大学, 导师: 杨德龙, pp. 20-29. (Hu Y J.2016. QTL mapping and meta-anaylsis of related traits to accumulation and remobilization of WSC of different organs in wheat after flowering[D]. Thesis for M. S., Gansu Agricultural University, Supervisor: Yang D L, pp. 20-29.) [4] 胡雅君, 栗孟飞, 杨德龙, 等. 2016. 小麦籽粒WSC含量QTL的整合与元分析[J]. 麦类作物学报, 36(8): 989-995. (Hu Y J, Li M F, Yang D L, et al.2016. Integration and meta-analysis of quantitative trait loci for water-soluble carbohydrate content in wheat grain[J]. Journal of Triticeae Crops, 36(8): 989-995.) [5] 江培顺, 张焕欣, 吕香玲, 等. 2013. 玉米产量相关性状Meta-QTL及候选基因分析[J]. 作物学报, 39(6): 969-978. (Jiang P S, Zhang H X, Lv X L, et al.2013. Analysis of Meta-QTL and candidate genes related to yield components in maize[J]. Acta Agronomica Sinica, 39(6): 969-978.) [6] 雷蕾, 郑洪亮, 杨洛淼, 等. 2017. 水稻耐盐性QTL的meta分析及候选基因发掘[J]. 华北农学报, 32(6): 45-53. (Lei L, Zheng H L, Yang L M, et al.2017. Meta-analysis of salt tolerance QTLs and mining of candidate genes[J]. Acta Agriculturae Boreali-Sinica, 32(6): 45-53.) [7] 吕百川. 2019. 干旱调控小麦花后茎叶果聚糖代谢转运的遗传分析[D]. 硕士学位论文, 甘肃农业大学, 导师: 杨德龙, pp. 23-34. (Lv B C.2019. Genetic dissection of post-anthesis fructan metabolism and remobilization in wheat stems and leaves regulated by drought stress[D]. Thesis for M. S., Gansu Agricultural University, Supervisor: Yang D L, pp. 23-34.) [8] 邱红梅, 厉志, 于妍, 等. 2015. 基于元分析的大豆含硫氨基酸相关基因挖掘与信息学分析[J]. 中国油料作物学报, 37(2): 141-147. (Qiu H M, Li Z, Yu Y, et al.2015. Mining and analysis of genes related to sulfur-containing amino acids in soybean based on Meta-QTL[J]. Chinese Journal of Oil Crop Sciences, 37(2): 141-147.) [9] 王健维, 程宇坤, 叶雪玲, 等. 2015. 小麦品质相关性状的一致性数量性状位点(MQTL)连锁图谱构建[J]. 农业生物技术学报, 23(5): 671-682. (Wang J W, Cheng Y K, Ye X L, et al.2015. Construction of linkage map of the meta quantitative trait loci (MQTL) on quality related traits in wheat (Triticum aestivum L.)[J]. Journal of Agricultural Biotechnology, 23(5): 671-682.) [10] 辛筱筱. 2016. 小麦回交导入系花后不同器官WSC积累转运相关性状QTL定位及其水分互作遗传分析[D]. 硕士学位论文, 甘肃农业大学, 导师: 杨德龙, pp. 26-34. (Xin X X.2016. QTL mapping and QTL×water regime interaction for related traits to WSC accumunation and remobilization of different organs after flowering in introgression lines of wheat[D]. Thesis for M. S., Gansu Agricultural University, Supervisor: Yang D L, pp. 26-34.) [11] 张为民. 2005. 小麦茎秆含糖量和生育期抗旱性的QTL分析[D]. 硕士学位论文, 山西农业大学, 导师: 李炳林, pp.27-39. (Zhang W M.2005. QTL analysis of resist a drought in wheat with sugar content of stem and reproductive period[D]. Thesis for M. S., Shanxi Agricultural University, Supervisor: Li B L, pp. 33-48.) [12] 张艳娇, 尹振功, 高山, 等. 2017. 大豆共生结瘤相关性状QTL定位信息整合及候选基因分析[J]. 中国油料作物学报, 39(5): 580-588. (Zhang Y J, Yin Z G, Gao S, et al.2017. Integration of QTL mapping information in soybean symbiotic nodule-related traits and analysis of candidate genes[J]. Chinese Journal of Oil Crop Sciences, 39(5): 580-588.) [13] 左煜昕, 刘媛, 张沛沛, 等. 2020. 小麦有效分蘖数QTLs定位及其元分析[J]. 农业生物技术学报, 28(4): 582-593. (Zuo Y X, Liu Y, Zhang P P, et al.2020. Mapping and meta-analysis of QTLs for the productive tiller number in wheat (Triticum aestivum)[J]. Journal of Agricultural Biotechnology, 28(4): 582-593.) [14] 左煜昕, 马靖福, 刘媛, 等. 2020. 小麦穗粒数QTL整合与元分析[J]. 麦类作物学报, 40(7): 771-779. (Zuo Y X, Ma J F, Liu Y, et al.2020. Mapping and meta-analysis of QTLs for the kernel number per spike in wheat (Triticum aestivum L.)[J]. Journal of Triticeae Crops, 40(7): 771-779. ) [15] Andersen P, Kragelund B B, Olsen A N, et al.2004. Structure and biochemical function of a prototypical Arabidopsis U-box domain[J]. Journal of Biological Chemistry, 279(38): 40053-40061. [16] Anne A, Aymeric L, Matthieu F, et al.2004. BioMercator: integrating genetic maps and QTL towards discovery of candidate genes[J]. Bioinformatics, 20(14): 2324-2326. [17] Chardon F, Virlon B, Moreau L, et al.2004. Genetic architecture of flowering time in maize as inferred from quantitative trait loci meta-analysis and synteny conservation with the rice genome[J]. Genetics, 18(168): 2169-2185. [18] Chen Y, Xu Y, Luo W, et al.2013. The F-box protein OsFBK12 targets OsSAMS1 for degradation and affects pleiotropic phenotypes, including leaf senescence, in rice[J]. Plant Physiology, 163(4): 1673-1685. [19] Darvasi A, Soller M.1997. A simple method to calculate resolving power and confidence interval of QTL map location[J]. Behavior Genetics, 27(2): 125-132. [20] Du H, Feng B R, Yang S S, et al.2012. The R2R3-MYB transcription factor gene family in maize[J]. PLOS ONE, 7(6): 1-12. [21] Hu X, Qian Q, Xu T, et al.2013. The U-box E3 ubiquitin ligase TUD1 functions with a heterotrimeric G a subunit to regulate brassinosteroid-mediated growth in rice[J]. PLOS Genetics, 9(3): 1-14. [22] Jain M, Nijhawan A, Arora R, et al.2007. F-box proteins in rice. Genome-wide analysis, classification, temporal and spatial gene expression during panicle and seed development, and regulation by light and abiotic stress[J]. Plant Physiology, 143(3): 1467-1483. [23] Kassa S, Yoseph B, Marilyn W, et al.2013. Meta-analyses of QTL for grain yield and anthesis silking interval in 18 maize populations evaluated under water-stressed and well-watered environments[J]. BMC Genomics, 14(313): 1-16. [24] Li M F, Liu Y, Ma J F, et al.2020. Genetic dissection of stem WSC accumulation and remobilization in wheat (Triticum aestivum L.) under terminal drought stress[J]. BMC Genetics, 21(1): 1-14. [25] Misra A N, Hall S G, Barber J.1991. The isolated D1/D2/cyt b-559 reaction centre complex of PhotosystemⅡ possesses a serine-type endopeptidase activity[J]. Biochimica Et Biophysica Acta International Journal of Biochemistry & Biophysics, 1059(2): 239-242. [26] Nantel A, Quatrano R S.1996. Characterization of three rice basic/leucine zipper factors, including two inhibitors of EmBP-1 DNA binding activity[J]. Journal of Biological Chemistry, 271(49): 31296-31305. [27] Piaskowski J L, Brown D, Campbell K G.2016. Near-infrared calibration of soluble stem carbohydrates for predicting drought tolerance in spring wheat[J].Agronomy Journal, 6(108): 285-293. [28] Rebetzke G, Van Herwaarden A, Jenkins C, et al.2008. Quantitative trait loci for water-soluble carbohydrates and associations with agronomic traits in wheat[J]. Australian Journal of Agricultural Research, 8(59): 891-905. [29] Somers D J, Fedak G, Savard M.2003. Molecular mapping of novel genes controlling fusarium head blight resistance and deoxynivalenol accumulation in spring wheat[J]. Journal of Genetics and Genomics, 46(4): 555-564. [30] Tuberosa R, Salvi S, Sanguineti M C, et al.2002. Mapping QTLs regulating morpho-physiological traits and yield: Case studies, shortcomings and perspectives in drought-stressed maize[J]. Annals of Botany, 89(7): 941-963. [31] Tyagi S, Mir R R, Balyan H S, et al.2015. Interval mapping and meta-QTL analysis of grain traits in common wheat (Triticum aestivum L.)[J]. Euphytica, 201(3):367-380. [32] Yang D L, Jing R L, Chang X P, et al.2007. Identification of quantitative trait loci and environmental interactions for accumulation and remobilization of water-soluble carbohydrates in wheat (Triticum aestivum L.) stems[J]. Genetics, 176(1): 571-584. [33] Zhang B, Li W Y, Chang X P, et al.2014. Effects of favorable alleles for water-soluble carbohydrates at grain filling on grain weight under drought and heat stresses in wheat[J]. PLOS ONE, 9(7): 102-117. [34] Zhang J J, Chang W, Bernard D, et al.2015. Wheat genotypic variation in dynamic fluxes of WSC components in different stem segments under drought during grain filling[J]. Frontiers in Plant Science, 6(624): 624-635. [35] Zhang Z, Huang J, Gao Y, et al.2020. Suppressed ABA signal transduction promotes sucrose utility in stem and reduces grain number in wheat under water stress[J]. Journal of Experimental Botany, 21(30): 1-36. |
[1] |
GAO Jie, SONG Guo-Qi, LI Ji-Hu, LI Yu-Lian, ZHANG Shu-Juan, ZHANG Rong-Zhi, GU Tian-Tian, LI Gen-Ying, LI Wei. Convertion and Redevelopment of Molecular Markers of 4 Pleiotropic Disease Resistance Genes in Wheat (Triticum aestivum)[J]. 农业生物技术学报, 2021, 29(5): 847-856. |
|
|
|
|