|
|
QTL Mapping for Fast Chlorophyll Fluorescence Parameters in Maize (Zea mays) |
LU Feng, LI Lu-Lu, CHEN Wan-Ying, LI Bei, YAO Su-Yi, SUN Yu, LIU Huan-Huan, YIN Zhi-Tong* |
Key Laboratory of Plant Functional Genomics, Ministry of Education/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture & Agri-Product Safety of MOE/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China |
|
|
Abstract Photosynthesis is closely related to crop yield. Fast chlorophyll fluorescence parameters can sensitively reflect the electron transport rate in photosynthesis. Studying the genetic basis of fast chlorophyll fluorescence parameters can help in breeding maize (Zea mays) hybrid with high photosynthetic efficiency. In this study, 160 recombinant inbred lines (RILs) derived from maize hybrid 'Xianyu335' by continuous self-crossing for 7 generations were used to construct a high-density genetic map and map QTLs for fast chlorophyll fluorescence parameters. For this purpose, 5 parameters including ABS/CSo, TRo/CSo, ETo/CSo, ETo/TRo, PIcs were measured in the RILs grown under 4 field conditions. A high-density SNP genetic map with a total length of 1 896.423 cM was constructed by SNP molecular markers originated from 20K molecular chips. The genetic map contained 2 915 markers, and the average distance between markers was 0.66 cM. A total of 15 related QTLs were identified using the best linear unbiased predictor (BLUP) of fast chlorophyll fluorescence parameters in multiple environments. The logarithm of odds (LOD) value were 2.52~7.35 and the explicable phenotypic variation were 4.56%~14.81%. Three of these QTLs were stably expressed in multiple environments, namely qREC3-1, qRPI2-1, and qRPI3-2. This study could provide a reference for further fine mapping of QTLs of rapid chlorophyll fluorescence parameters and molecular marker-assisted selection for high photosynthetic efficiency breeding.
|
Received: 19 October 2020
Published: 01 May 2021
|
|
Corresponding Authors:
*ztyin@yzu.edu.cn
|
|
|
|
[1] 郭莹. 2012. 利用不同F2群体定位玉米株型性状的QTL[D]. 硕士学位论文, 西南大学, 导师: 蔡一林, pp: 44-53. (Guo Y.2012. QTL mapping for plant-tape traits by using different F2 populations of maize[D]. Thesis for M.S, Southwest University, Supervisor: Cai Y L, pp: 44-53.) [2] 秦秋霞. 2016. 玉米快速叶绿素荧光参数的基因定位及候选基因挖掘[D]. 硕士学位论文, 扬州大学, 导师: 邓德祥; 印志同, pp. 13-17. (Qin Q X.2016. Gene mapping of chlorophyll fluorescence parameters and candidate genes discovering in maize[D]. Thesis for M.S, Supervisor: Deng D X; Yin Z T, Yangzhou University, pp. 13-17) [3] 沈波, 蒋靓, 於卫东, 等. 2009. 水稻苗期盐胁迫下叶绿素荧光参数的QTL分析[J]. 中国水稻科学, 023(3): 319-322. (Shen B, Jiang J, Yu W D, et al.2009. QTL analysis of chlorophyll fluorescence parameters in rice seedlings under salt stress[J]. Chinese Journal of Rice Science, 023(3): 319-322.) [4] 印志同, 孟凡凡, 宋海娜, 等. 2011. 大豆开花盛期快速叶绿素荧光参数的QTL分析[J]. 中国农业科学, 044(24): 4980-4987. (Yin Z T, Meng F F, Song H N, et al, 2011. QTL mapping for fast chlorophyll fluorescence parameters in soybean[J]. Scientia Agricultura Sinica, 44(24): 4980-4987). [5] 余婷婷, 刘朝显, 梅秀鹏, 等. 2015. 玉米光合性状的相关性及QTL分析[J]. 西南大学学报: 自然科学版, 37(9): 1-10. (Yu T T, LIU C X, Mei X P, et al.2015. Correlation ang QTL analyses for photosynthetic traits in maize[J]. Journal of Southwest University (Natural Science), 37(9): 1-10.) [6] Chen Y, Ruan L, Zhang W.2009. Relationship of chlorophyll fluorescence parameter and variety drought resistance in sweet potato[J]. Journal of Anhui Agricultural Sciences, 37(36): 7883-7884. [7] Collins N C, Tardieu F, Tuberosa R.2008. Quantitative trait loci and crop performance under abiotic stress: Where do we stand?[J]. Plant Physiology, 147(2): 469-486. [8] Fracheboud Y, Jompuk C, Ribaut J M, et al.2004. Genetic analysis of cold-tolerance of photosynthesis in maize[J]. Plant Molecular Biology, 56(2): 241-253. [9] Fracheboud Y, Ribaut J M, Vargas M, et al.2002. Identification of quantitative trait loci for cold-tolerance of photosynthesis in maize (Zea mays L.)[J]. Journal of Experimental Botany, 53(376): 1967-1977. [10] Guo P, Baum M, Varshney R K, et al.2008. QTLs for chlorophyll and chlorophyll fluorescence parameters in barley under post-flowering drought[J]. Euphytica, 163(2): 203-214. [11] Jompuk C, Fracheboud Y, Stamp P, et al.2005. Mapping of quantitative trait loci associated with chilling tolerance in maize (Zea mays L.) seedlings grown under field conditions[J]. Journal of Experimental Botany, 56(414): 1153-1163. [12] Krause G, Weis E.1991. Chlorophyll fluorescence and photosynthesis: The basics[J]. Annual Review of Plant Biology, 42(1): 313-349. [13] Lincoln S E, Daly M J, Lande E S.1993. Constructing Genetic Linkage Maps with MAPMAKER/EXP Version 3.0: A Tutorial and Reference Manual[M]. A White head Institute for Biomedical Research Technical Report, USA, pp.7-40. [14] Long S, Marshall-Colon A, Zhu X G.2015. Meeting the global food demand of the future by engineering crop photosynthesis and yield potential[J]. Cell, 161(1): 56-66. [15] Olaf K, Jan F H S.1990. The use of chlorophyll fluorescence nomenclature in plant stress physiology[J]. Photosynthesis Research, 25(3): 147-150. [16] Padraic J F, Jeremy H, Mark G M A.2011. Natural genetic variation in plant photosynthesis[J]. Trends in Plant Science, 16(6): 327-335. [17] Piepho H P, Mohring J, Melchinger A E, et al.2008. BLUP for phenotypic selection in plant breeding and variety testing[J]. Euphytica, 161(s1-2): 209-228. [18] Šimić D, Lepeduš H, Jurković, V, et al.2014. Quantitative genetic analysis of chlorophyll a fluorescence parameters in maize in the field environments[J]. Journal of Integrative Plant Biology, 56(007): 695-708. [19] Sinclair T R, Purcell L C, Sneller C H.2004. Crop transformation and the challenge to increase yield potential[J]. Trends in Plant Science, 9(2): 70-75. [20] Strasser B, Strasser R, Mathis P.1995. Measuring Fast Fluorescence Transients to Address Environmental Questions: The JIPtest[M].Mathis, Photosynthesis: From Light to Biosphere. KAP Press, Montpellier, pp: 977-980. [21] Strasser R, Srivastava A, Tsimil-Michael M.2000. The Fluorescence Transient as a Tool to Characterize and Screen Photosynthetic Samples. Probing Photosynthesis: Mechanisms, Regulation and Adaptation[M] . London: CRC Press, pp. 445-483. [22] Strasser R, Tsimil-Michael M, Srivastava A.2004. Analysis of the Chlorophyll a Fluorescence Transient. Chlorophyll a Fluorescence: A Signature of Photosynthesis[M]. The Netherlands: Springer, pp. 321-362. [23] Wang D, Portis A R.2006. Increased sensitivity of oxidized large isoform of Rubisco activase to ADP inhibition is due to an interaction between its carboxyl extension and nucleotide-binding pocket[J]. Journal of Biological Chemistry, 281(35): 25241-25249. [24] Wang Z, Li G, Sun H, et al.2018. Effects of drought stress on photosynthesis and photosynthetic electron transport chain in young apple tree leaves[J]. Biology Open, 7(11): bio035279. [25] Yang D L, Jing R L, Chang X P, et al.2007. Quantitative trait loci mapping for chlorophyll fluorescence and associated traits in wheat (Triticum aestivum)[J]. Journal of Integrative Plant Biology, 49(5): 646-654. [26] Yin Z T, Meng F, Song H, et al.2010. Mapping quantitative trait loci associated with chlorophyll a fluorescence parameters in soybean (Glycine max (L.) Merr.)[J]. Planta, 231(4): 875-885. [27] Yin Z T, Qin Q X, Wu F F, et al.2015. Quantitative trait locus mapping of chlorophyll a fluorescence parameters using a recombinant inbred line population in maize[J]. Euphytica, 205(1): 25-35. [28] Yin Z T, Wang Y Q, Wu F F, et al.2014. Quantitative trait locus mapping of resistance to Aspergillus flavus infection using a recombinant inbred line population in maize[J]. Molecular Breeding, 33(1): 39-49. [29] Zhuang Y, Wang E, Zhao T, et al.2018. Characteristics of chlorophyll fluorescence and antioxidant-oxidant balance in PEPC and PPDK transgenic rice under aluminum stress[J]. Russian Journal of Plant Physiology, 65(1): 49-56. |
|
|
|