|
|
The Research Progress on Fungal Small Cysteine-rich Secretory Proteins |
ZHANG Zi-Hui*, JIN Jing-Hao*, CHEN Xiao-Ren** |
College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China |
|
|
Abstract The small cysteine-rich proteins (SCRs) are one class of proteins secreted by fungi, which are usually less than 200 amino acids in length containing 2%~20% cysteine residues. Some members are avirulence proteins of plant pathogenic fungi, indicating that these effector proteins may play an important role in the life cycles of fungi. Molecular structure, subcellular localization and biological functions of SCRs in fungi were reviewed in this paper. Especially, the biological functions of these proteins were elucidated by focusing on their involvement in the pathogenesis of the pathogenic fungi and their influence on the growth and development of the fungi. This review provides a summary for illuminating the biological functions of SCRs, particularly lays a foundation for further elucidating the roles of these effector proteins in the interactions between fungi and their hosts, and for the management of plant fungal diseases.
|
Received: 10 August 2020
Published: 01 April 2021
|
|
Corresponding Authors:
** xrchen@yzu.edu.cn
|
About author:: * The authors who contributed equally |
|
|
|
[1] 郭立佳, 王飞燕, 梁昌聪等. 2016. 香蕉枯萎病菌假定分泌蛋白SP10的功能分析[J]. 热带作物学报, 37(03): 525-531. (Guo L J, Wang F Y, Liang C Cet al.2016. Functional analysis of the putative secretory protein SP10 in the fungal pathogen Fusarium oxysporum[J]. Chinese Journal of Tropical Crops, 37(03): 525-531.) [2] 黄沈鑫. 2020. 恶疫霉胞外效应蛋白SCR96的功能分析及应用研究[D]. 硕士学位论文, 扬州大学, 导师: 陈孝仁, pp. 43-53. (Huang S X.2020 Functional analysis and application trial of a Phytophthora cactorum extracellular effector SCR96[D]. Thesis for M. S., Yangzhou University, Suppervisor: Chen X R, pp. 43-53.) [3] 康振生. 2010. 我国植物真菌病害的研究现状及发展策略[J]. 植物保护, 36(3): 9-12. (Kang Z S.2010. Current status and development strategy for research on plant fungal diseases in China[J]. Journal of Plant Protection, 36(3): 9-12.) [4] 李建嫄. 2018. 基于转录组分析的小麦叶锈菌效应蛋白的筛选及功能分析[D]. 博士学位论文, 河北农业大学, 导师: 杨文香, pp 52. (Li J Y.2018. Screening and functional analysis of effector proteins based on Puccinia triticina transcriptome[D]. Thesis for Ph. D., Hebei Agriculture University, Suppervisor: Yang W X, pp 52.) [5] 刘蓓蓓. 2017, 辣椒疫霉质外体效应分子SCR209的功能分析[D]. 硕士学位论文, 扬州大学, 导师: 陈孝仁, pp. 29-31. (Liu B B.2017. Functional analysis of the apoplastic effector SCR209 of Phytophthora capsici[D]. Thesis for M. S., Yangzhou University, Suppervisor: Chen X R, pp. 29-31.) [6] 刘艳琴, 刘立娜, 陈燕, 等. 2018. 植物病原真菌效应蛋白与植物互作动态分析[J]. 分子植物育种, 16(20): 6678-6687. (Liu Y Q, Liu L N, Chen Yet al.2018. Dynamic analysis of interaction between plant pathogenic fungus effector protein and plants[J]. Molecular Plant Breeding, 16(20): 6678-6687.) [7] 盛桂林. 2018. 辣椒疫霉胞外效应蛋白SCR82的功能研究[D]. 硕士学位论文, 扬州大学, 导师: 陈孝仁, pp. 25-29. (Sheng G L.2018. Functional of the extracellular effector SCR82 of Phytophthora capsici[D]. Thesis for M. S., Yangzhou University, Suppervisor: Chen X R, pp. 25-29.) [8] 羊国根. 2017. 核盘菌分泌蛋白SsCP1的功能研究[D]. 博士学位论文, 华中农业大学, 导师: 姜道宏, pp.78-83. (Yang G G.2017. Functional research on a secreted protein SSCP1 in Sclerotinia Sclerotiorum[D]. Thesis for Ph. D., Huazhong Agriculture University, Suppervisor: Jiang D H, pp.78-83.) [9] 张洁琼, 王劲, 左开井. 2010. 真菌无毒基因克隆与抗性蛋白互作研究[J]. 中国农业科技导报, 12(06): 36-42. (Zhang J Q, Wang J, Zuo K J.2010. Studies on fungal avirulence genes cloning and their interaction with R protein[J]. Journal of Agricultural Science and Technology, 12(06): 36-42.) [10] 张子辉, 黄沈鑫, 陶航等. 2019. 辣椒疫霉质外体疏水小蛋白SCR82编码基因的转录特征、异源表达和功能[J]. 微生物学报, 59(08): 1586-1599. (Zhang Z H, Huang S X, Tao Het al.2019. Gene transcriptional pattern, prokaryotic expression and functional analysis of an apoplastic, hydrophobic and small effector SCR82 from Phytophthora capsici[J]. Acta Microbiologica Sinica, 59(8): 1586-1599.) [11] 赵冬梅, 徐进, 杨志辉, 等. 2014. 致病疫霉坏死基因PcF_SCR. 1的克隆及功能分析[J]. 农业生物技术学报, 22(6): 744-752. (Zhao D M, Xu J, Yang Z H.2014. Cloning and function analysis of necrosis-inducing gene PcF/SCR. 1 in Phytophthora infestans[J]. Journal of Agricultural Biotechnology, 22(6): 744-752.) [12] 周峰. 2016. 植物病原真菌效应蛋白研究进展[J]. 江苏农业科学, 44(10): 31-34. (Zhou F.2016. Research progress on effector proteins of plant fungal pathogens[J]. Jiangsu Agricultural Sciences, 44(10): 31-34.) [13] Belén P O, Covadonga V, Manning J M, et al.2018. Characterization of a novel cysteine-rich antifungal protein from Fusarium graminearum with activity against maize fungal pathogens[J]. International Journal of Food Microbiology, 283: 45-51. [14] Brown J K M, Jessop A C.1995. Genetics of avirulences in Erysiphe graminis f. sp. hordei[J]. Plant Pathology, 44: 1039-49. [15] Brown N A, Antoniw J, Hammond-Kosack K E.2012. The predicted secretome of the plant pathogenic fungus Fusarium graminearum: A refined comparative analysis[J]. PLoS One, 7(4): e33731. [16] Caccia D, Dugo M, Callari M, et al.2013. Bioinformatics tools for secretome analysis[J]. Biochimica et Biophysica Acta , 1834(11): 2442-2453. [17] Catanzariti A M, Dodds P N, Lawrence G J, et al.2006. Haustorially expressed secreted proteins from flax rust are highly enriched for avirulence elicitors[J]. Plant Cell, 18(1): 243-256. [18] Chen H, Kovalchuk A, Kerio S, et al.2013. Distribution and bioinformatic analysis of the cerato-platanin protein family in Dikarya[J]. Mycologia, 105(6): 1479-1488. [19] Chen X R, Li Y P, Li Q Y, et al.2016. SCR96, a small cysteine-rich secretory protein of Phytophthora cactorum, can trigger cell death in the Solanaceae and is important for pathogenicity and oxidative stress tolerance[J]. Molecular plant pathology 17(4): 577-587. [20] Coca M, Bortolotti C, Rufat M, et al.2004. Transgenic rice plants expressing the antifungal AFP protein from Aspergillus giganteus show enhanced resistance to the rice blast fungus Magnaporthe grisea[J]. Plant Molecular Biology, 54(2): 245-259. [21] Collemare J, O'Connell R, Lebrun M H.2019. Nonproteinaceous effectors: The terra incognita of plant-fungal interactions[J]. New Phytologist, 223(2): 590-596. [22] Colombatti F, Gonzalez D H, Welchen E.2014. Plant mitochondria under pathogen attack: A sigh of relief or a last breath?[J]. Mitochondrion, 19: 238-244. [23] Cuomo C A, Guldener U, Xu J R, et al.2007. The Fusarium graminearum genome reveals a link between localized polymorphism and pathogen specialization[J]. Science, 317(5843): 1400-1402. [24] Dagvadorj B, Ozketen A C, Andac A, et al.2017. A Puccinia striiformis f. sp. tritici secreted protein activates plant immunity at the cell surface[J]. Scientific Reports, 7(1): 1141-1141. [25] de Jonge R, van Esse H P, Kombrink A, et al.2010. Conserved fungal LysM effector Ecp6 prevents chitin-triggered immunity in plants[J]. Science, 329(5994): 953-955. [26] Denton-Giles M, McCarthy H, Sehrish T, et al.2020. Conservation and expansion of a necrosis-inducing small secreted protein family from host-variable phytopathogens of the Sclerotiniaceae[J]. Molecular Plant Pathology, 21(4): 512-526. [27] de O Barsottini MR, de Oliveira JF, Adamoski D, et al.2013. Functional diversification of cerato-platanins in Moniliophthora perniciosa as seen by differential expression and protein function specialization[J]. Molecular Plant-Microbe Interactions, 26(11): 1281-1293. [28] de Oliveira A L, Gallo M, Pazzagli L, et al.2011. The structure of the elicitor Cerato-platanin (CP), the first member of the CP fungal protein family, reveals a double psibeta-barrel fold and carbohydrate binding[J]. Journal of Biological Chemistry, 286(20): 17560-17568. [29] de Sain M, Rep M.2015. The role of pathogen-secreted proteins in fungal vascular wilt diseases[J]. International Journal of Molecular Sciences, 16(10): 23970-23993. [30] Del Sorbo G, Scala F, Parrella G, et al.2000. Functional expression of the gene cu, encoding the phytotoxic hydrophobin cerato-ulmin, enables ophiostoma quercus, a nonpathogen on elm, to cause symptoms of dutch elm disease[J]. Molecular Plant-Microbe Interaction, 13(1): 43-53. [31] Dixon M S, Jones D A, Keddie J Set al.1996. The tomato Cf-2 disease resistance locus comprises two functional genes encoding leucine-rich repeat proteins[J]. Cell, 84: 451-59. [32] Djonović S, Pozo M J, Dangott L J, et al.2006. Sm1, a proteinaceous elicitor secreted by the biocontrol fungus Trichoderma virens induces plant defense responses and systemic resistance[J]. Molecular Plant-Microbe Interaction, 19(8): 838-853. [33] Dodds P N, Rathjen J P.2010. Plant immunity: Towards an integrated view of plant-pathogen interactions[J]. Nature Reviews Genetics, 11(8): 539-548. [34] Fang A, Gao H, Zhang N, et al.2019. A novel effector gene SCRE2 contributes to full virulence of Ustilaginoidea virens to rice[J]. Frontiers in Microbiology, 10: 845. [35] Farman M L, Eto Y, Nakao T, et al.2002. Analysis of the structure of the AVR1-CO39 avirulence locus in virulent rice-infecting isolates of Magnaporthe grisea[J]. Molecular Plant-Microbe Interaction, 15(1): 6-16. [36] Frias M, Brito N, Gonzalez C.2013. The Botrytis cinerea cerato-platanin BcSpl1 is a potent inducer of systemic acquired resistance (SAR) in tobacco and generates a wave of salicylic acid expanding from the site of application[J]. Molecular Plant Pathology, 14(2): 191-196. [37] Gao R, Ding M, Jiang S, et al.2020 The evolutionary and functional paradox of cerato-platanins in fungi[J]. Applied and Environmental Microbiology, 86(13): e00696-20. [38] Gawehns F, Cornelissen B J, Takken F L.2013. The potential of effector-target genes in breeding for plant innate immunity[J]. Microbial Biotechnology, 6(3): 223-229. [39] Girgi M, Breese W A, Lorz H, et al.2006. Rust and downy mildew resistance in pearl millet (Pennisetum glaucum) mediated by heterologous expression of the afp gene from Aspergillus giganteus[J]. Transgenic Research, 15(3): 313-324. [40] Hogg P J.2003. Disulfide bonds as switches for protein function[J]. Trends in Biochemical Sciences, 28(4): 210-214. [41] Houterman P M, Speijer D, Dekker H L, et al.2007. The mixed xylem sap proteome of Fusarium oxysporum-infected tomato plants[J]. Molecular Plant Pathology, 8: 215-21. [42] Houterman P M, Cornelissen B J, Rep M.2008. Suppression of plant resistance gene-based immunity by a fungal effector[J]. PLoS Pathogens, 4(5): e1000061. [43] Howlett B J.2006. Secondary metabolite toxins and nutrition of plant pathogenic fungi[J]. Current Opinion in Plant Biology, 9(4): 371-375. [44] Huber A, Galgoczy L, Varadi G, et al.2020. Two small, cysteine-rich and cationic antifungal proteins from Penicillium chrysogenum: A comparative study of PAF and PAFB[J]. Biochimica et Biophysica Acta-Biomembranes, 1862(8): 183246. [45] Huber A, Hajdu D, Bratschun-Khan D, et al.2018. New antimicrobial potential and structural properties of PAFB: A cationic, cysteine-rich protein from Penicillium chrysogenum Q176[J]. Scientific Reports, 8(1): 1751. [46] Jia Y, McAdams S A, Bryan G T, et al.2000. Direct interaction of resistance gene and avirulence gene products confers rice blast resistance[J]. EMBO Journal, 19(15): 4004-4014. [47] Jones J D G, Dangl J L.2006. The plant immune system[J]. Nature, 444: 323-329. [48] Joosten M H, Vogelsang R, Cozijnsen T J, et al.1997. The biotrophic fungus Cladosporium fulvum circumvents Cf-4-mediated resistance by producing unstable AVR4 elicitors[J]. Plant Cell, 9(3): 367-379. [49] Joosten M H A J, Cozijnsen T J, De Wit P J G M.1994. Host resistance to a fungal tomato pathogen lost by a single base-pair change in an avirulence gene[J]. Nature, 367(6461): 384-386. [50] Krijger J J, Thon M R, Deising H B, et al.2014. Compositions of fungal secretomes indicate a greater impact of phylogenetic history than lifestyle adaptation[J]. BMC Genomics, 15: 722. [51] Lamb C, Dixon R A.1997. The oxidative burst in plant disease resisitance[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 48(1): 251-275. [52] Lauge R, Goodwin P H, De Wit P J G M, et al.2000. Specific HR-associated recognition of secreted proteins from Cladosporium fulvum occurs in both host and non-host plants[J]. Plant Journal, 23(6): 735-745. [53] Liu Z, Faris J D, Oliver R P, et al.2009. SnTox3 acts in effector triggered susceptibility to induce disease on wheat carrying the Snn3 gene[J]. PLoS Pathogens, 5(9): e1000581. [54] Liu Z, Zhang Z, Faris J D, et al.2012. The cysteine rich necrotrophic effector SnTox1 produced by Stagonospora nodorum triggers susceptibility of wheat lines harboring Snn1[J]. PLoS Pathogens, 8(1): e1002467. [55] Lu S, Edwards M C.2015. Genome-wide analysis of small secreted cysteine-rich proteins identifies candidate effector proteins potentially involved in Fusarium graminearum-wheat interactions[J]. Phytopathology, 106(2): 166. [56] Luderer R, De Kock M J, Dees R H, et al.2002. Functional analysis of cysteine residues of ECP elicitor proteins of the fungal tomato pathogen Cladosporium fulvum[J]. Molecular Plant Pathology, 3(2): 91-95. [57] Lyu X, Shen C, Fu Y, et al.2016. A small secreted virulence-related protein is essential for the necrotrophic interactions of Sclerotinia sclerotiorum with its host plants[J]. PLoS Pathogens, 12(2): e1005435. [58] Ma L J, van der Does H C, Borkovich K A, et al.2010. Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium[J]. Nature, 464(7287): 367-373. [59] Mentlak T A, Kombrink A, Shinya T, et al.2012. Effector-mediated suppression of chitin-triggered immunity by Magnaporthe oryzae is necessary for rice blast disease[J]. Plant Cell, 24(1): 322-335. [60] Meyer V.2008 A small protein that fights fungi: AFP as a new promising antifungal agent of biotechnological value[J]. Applied Microbiology & Biotechnology, 78(1): 17-28. [61] Moreno A B, Penas G, Rufat M, et al.2005. Pathogen-induced production of the antifungal AFP protein from Aspergillus giganteus confers resistance to the blast fungus Magnaporthe grisea in transgenic rice[J]. Molecular Plant-Microbe Interactions, 18(9): 960-972. [62] Narvaez I, Khayreddine T, Pliego C, et al.2018. Usage of the heterologous expression of the antimicrobial gene afp from Aspergillus giganteus for increasing fungal resistance in olive[J]. Frontiers in Plant Science, 9: 680. [63] Nie J, Yin Z, Li Z, et al.2019. A small cysteine-rich protein from two kingdoms of microbes is recognized as a novel pathogen-associated molecular pattern[J]. New Phytologist, 222(2): 995-1011. [64] Oliveira-Garcia E, Valent B.2015. How eukaryotic filamentous pathogens evade plant recognition[J]. Current Opinion In Microbiology, 26: 92-101. [65] Orbach M J, Farrall L, Sweigard J A, et al.2000. A telomeric avirulence gene determines efficacy for the rice blast resistance gene Pi-ta[J]. Plant Cell, 12(11): 2019-2032. [66] Patino B, Vazquez C, Manning J M, et al.2018. Characterization of a novel cysteine-rich antifungal protein from Fusarium graminearum with activity against maize fungal pathogens[J]. International Journal of Food Microbiology, 283: 45-51. [67] Pazzagli L, Seidl-Seiboth V, Barsottini M, et al.2014. Cerato-platanins: Elicitors and effectors[J]. Plant Science, 228: 79-87. [68] Pazzagli L, Zoppi C, Carresi L, et al.2009. Characterization of ordered aggregates of cerato-platanin and their involvement in fungus-host interactions[J]. Biochimica et Biophysica Acta, 1790(10): 1334-1344. [69] Qi M, Link TI, Müller Met al.2016. A small cysteine-rich protein from the Asian soybean rust fungus Phakopsora pachyrhizi suppresses plant immunity[J]. PLoS Pathogens, 12(9): e1005827. [70] Quarantin A, Castiglioni C, Schafer W, et al.2019. The Fusarium graminearum cerato-platanins loosen cellulose substrates enhancing fungal cellulase activity as expansin-like proteins[J]. Plant Physiology and Biochemistry, 139: 229-238. [71] Quarantin A, Glasenapp A, Schafer W, et al.2016. Involvement of the Fusarium graminearum cerato-platanin proteins in fungal growth and plant infection[J]. Plant Physiology and Biochemistry, 109: 220-229. [72] Rohe M, Gierlich A, Hermann H, et al.1995. The race-specific elicitor, NIP1, from the barley pathogen, Rhynchosporium secalis, determines avirulence on host plants of the Rrs1 resistance genotype[J]. EMBO Journal, 14(17): 4168-4177. [73] Rooney H C, Van't Klooster J W, van der Hoorn R A, et al.2005. Cladosporium Avr2 inhibits tomato Rcr3 protease required for Cf-2-dependent disease resistance[J]. Science, 308(5729): 1783-1786. [74] Ruocco M, Lanzuise S, Lombardi N, et al.2015. Multiple roles and effects of a novel Trichoderma hydrophobin[J]. Molecular Plant-Microbe Interactions, 28(2): 167-179. [75] Saunders D G, Win J, Cano L M, et al.2012. Using hierarchical clustering of secreted protein families to classify and rank candidate effectors of rust fungi[J]. PLoS One, 7(1): e29847. [76] Schurch S, Linde C C, Knogge W, et al.2004. Molecular population genetic analysis differentiates two virulence mechanisms of the fungal avirulence gene NIP1[J]. Molecular Plant-Microbe Interactions, 17(10): 1114-1125. [77] Seitner D, Uhse S, Gallei M, et al.2018. The core effector Cce1 is required for early infection of maize by Ustilago maydis[J]. Molecular Plant Pathology, 19(10): 2277-2287. [78] Shcherbakova L A, Odintsova T I, Stakheev A A, et al.2015. Identification of a novel small cysteine-rich protein in the fraction from the biocontrol Fusarium oxysporum strain CS-20 that mitigates Fusarium wilt symptoms and triggers defense responses in tomato[J]. Frontiers in Plant Science, 6: 1207. [79] Sperschneider J, Gardiner D M, Thatcher L F, et al.2015. Genome-wide analysis in three Fusarium pathogens identifies rapidly evolving chromosomes and genes associated with pathogenicity[J]. Genome Biology and Evolution, 7(6): 1613-1627. [80] Stergiopoulos I, De Wit P J G M.2009. Fungal effector proteins[J]. Annual Review of Phytopathology, 47(1): 233-263. [81] Takai S.1978. Cerato-ulmin, a wilting toxin of ceratocystis ulmi: Cultural factors affecting cerato-ulmin production by the fungus[J]. Journal of Phytopathology, 91(2): 147-158. [82] Tan K C, Phan H T, Rybak K, et al.2015. Functional redundancy of necrotrophic effectors-consequences for exploitation for breeding[J]. Frontiers in Plant Science, 6: 501. [83] Temple B, Horgen P A, Bernier L, et al.1997. Cerato-ulmin, a hydrophobin secreted by the causal agents of dutch elm disease, is a parasitic fitness factor[J]. Fungal Genetics & Biology, 22(1): 0-53. [84] van den Burg H A, Spronk C A, Boeren S, et al.2004. Binding of the AVR4 elicitor of Cladosporium fulvum to chitotriose units is facilitated by positive allosteric protein-protein interactions: The chitin-binding site of AVR4 represents a novel binding site on the folding scaffold shared between the invertebrate and the plant chitin-binding domain[J]. Journal of Biological Chemistry, 279(16): 16786-16796. [85] van den Burg H A, Westerink N, Francoijs K J, et al.2003. Natural disulfide bond-disrupted mutants of AVR4 of the tomato pathogen Cladosporium fulvum are sensitive to proteolysis, circumvent Cf-4-mediated resistance, but retain their chitin binding ability[J]. Journal of Biological Chemistry, 278(30): 27340-27346. [86] van den Burg H A, Harrison S J, Joosten M H A J, et al.2006. Cladosporium fulvum Avr4 protects fungal cell walls against hydrolysis by plant chitinases accumulating during infection[J]. Molecular Plant-Microbe Interactions, 19(12): 1420-1430. [87] van Esse H P, Van't Klooster J W, Bolton M D, et al.2008 The Cladosporium fulvum virulence protein Avr2 inhibits host proteases required for basal defense[J]. Plant Cell, 20(7): 1948-1963. [88] van Kan J A, van den Ackerveken G F, de Wit P J.1991. Cloning and characterization of cDNA of avirulence gene avr9 of the fungal pathogen Cladosporium fulvum, causal agent of tomato leaf mold[J]. Molecular Plant-Microbe Interactions, 4(1): 52-59. [89] van't Slot K A, van den Burg H A, Kloks C P, et al.2003. Solution structure of the plant disease resistance-triggering protein NIP1 from the fungus Rhynchosporium secalis shows a novel beta-sheet fold[J]. Journal of Biological Chemistry, 278(46): 45730-45736. [90] Vervoort J, van den Hooven H W, Berg A, et al.1997. The race-specific elicitor AVR9 of the tomato pathogen Cladosporium fulvum: A cystine knot protein. Sequence-specific 1H NMR assignments, secondary structure and global fold of the protein[J]. FEBS Letters, 404(2-3): 153-158. [91] Wang D, Tian L, Zhang D, et al.2020. Functional analyses of small secreted cysteine-rich proteins identified candidate effectors in Verticillium dahliae[J]. Molecular Plant Pathology, 21(5): 667-685. [92] Wang W, An B, Feng L, et al.2018. A Colletotrichum gloeosporioides cerato-platanin protein, CgCP1, contributes to conidiation and plays roles in the interaction with rubber tree[J]. Canadian Journal of Microbiology, 64(11): 826-834. [93] Wang Z, Li X, Wang X, et al.2019. Arabidopsis ER-localized UBAC2 proteins interact with pamp-induced coiled-coil to regulate pathogen-induced callose deposition and plant immunity[J]. Plant Cell, 31(1): 153-171. [94] Wedemeyer W J, Welker E, Narayan M, et al.2000. Disulfide bonds and protein folding[J]. Biochemistry, 39(23): 7032-7032. [95] Weiberg A, Wang M, Lin F M, et al.2013. Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways[J]. Science, 342(6154): 118-123. [96] Westerink N, Brandwagt B F, de Wit P J, et al.2004. Cladosporium fulvum circumvents the second functional resistance gene homologue at the Cf-4 locus (Hcr9-4E) by secretion of a stable avr4E isoform[J]. Molecular Microbiology, 54(2): 533-545. [97] Wibberg D, Andersson L, Tzelepis G, et al.2016. Genome analysis of the sugar beet pathogen Rhizoctonia solani AG2-2IIIB revealed high numbers in secreted proteins and cell wall degrading enzymes[J]. BMC Genomics, 17: 245. [98] Zhang N, Yang J, Fang A, et al.2020. The essential effector SCRE1 in Ustilaginoidea virens suppresses rice immunity via a small peptide region[J]. Molecular Plant Pathology, 21(4): 445-459. |
[1] |
HE Hai-Jian, LIU Zheng-Kui, WU Yuan, Wang Zhi-Peng, CHEN Lin, WANG Lei, ZHOU Ying-Shan, JIANG Chun-Yan, SONG Hou-Hui, WANG Xiao-Du. Establishment and Application of Multiplex Ligation-dependent Probe Amplification Assay for Identification of Pathogens Causing Porcine Viral Diarrhea Diseases[J]. 农业生物技术学报, 2020, 28(9): 1699-1710. |
|
|
|
|