|
|
Application of Genome Editing Technique in Genetic Improvement of Soybean (Glycine max) |
CHEN Xiao1,2, FENG Xian-Zhong1,* |
1 CAS Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; 2 University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract Soybean (Glycine max) is an important grain and oil crop in the world, which provides abundant protein and oil sources for human and animals. The successful commercial utilization of transgenic technology in soybean has become a classic case of biotechnology in promoting crop production. In recent years, the rapid development of new generation biotechnology, such as genome editing, has provided new opportunities for further improvement of soybean agronomic traits. Recently, genome editing technology represented by CRISPR/Cas technology begins to be widely used in genetic improvement of soybean, which shows powerful potentials on improving quality, regulating growth period and stress resistance. This review summarizes the latest research progress in this field from the development of genome editing technology, the application of genome editing technology in soybean genetic improvement and the main problems in current application of genome editing technology in soybean, which provides a reference for the work of using genome editing technology as a tool to accelerate soybean genetic improvement.
|
Received: 05 November 2020
Published: 01 April 2021
|
|
Corresponding Authors:
* fengxianzhong@iga.ac.cn
|
|
|
|
[1] 柏梦焱, 袁珏慧, 孙嘉丰, 等. 基于CRISPR-Cas9基因编辑技术创制大豆gmnark超结瘤突变体[J]. 大豆科学, 2019,38(4): 525-532. (Bai M Y, Yuan J H, Sun J F, et al., 2019. Generation of gmnark mutant with supernodulation via CRISPR-Cas9 in soybean[J]. Soybean Science, 38(4): 525-532.) [2] 冯献忠, 刘宝辉, 杨素欣. 2014. 大豆分子设计育种研究进展与展望[J]. 土壤与作物, 3(4):123-131. (Feng X Z, Liu B H, Yang S X.2014. Progress and perspective of soybean molecular design breeding research[J]. Soil and Crop, 3(4): 123-131.) [3] 侯智红. 2019. 利用CRISPR/Cas9技术创制大豆高油酸突变系[D]. 硕士学位论文, 广州大学, 导师: 刘宝辉, pp.1-16. (Hou Z H.2019. Creation of high oleic acid soybean mutation plants by CRISPR/Cas9[D]. Thesis for M.S., Guangzhou University, Supervisor: Liu B H, pp. 1-16.) [4] 胡玉瑶. 2020. 大豆疫霉纤维二糖水解酶PsGH7a的功能和应用潜力研究[D]. 硕士学位论文, 山东农业大学, 导师: 王群青, pp. 1-8. (Hu Y Y.2020. The function and applied potential of cellobiose hydrolase PsGH7a of phytophthora sojae[D]. Thesis for M.S., Shandong Agriculture University, Supervisor: Wang Q Q, pp. 1-8.) [5] 李晓院. 2019. 大豆Gmsos1突变系的检测与耐盐性评价[D]. 硕士学位论文, 东北林业大学, 导师: 解莉楠, pp. 1-6. (Li X Y.2019. Detection and evaluation of Gmsos1 mutant of salt tolerance in soybean[D]. Thesis for M.S., Northeast Forestry University, Supervisor: Xie L N, pp. 1-6.) [6] 刘丽凤. 2018. 基于E1基因表达调控的大豆生育期性状改良[D]. 硕士学位论文, 中国农业科学院, 导师: 韩天富, pp. 1-11. (Liu L F.2018. Modifying maturity-related traits by regulating the expression level of E1 gene in soybean[D]. Thesis for M.S., Chinese Academy of Agricultural Sciences Dissertation, Supervisor: Han T F, pp. 1-11.) [7] 孙现军. 2015. CRISPR/Cas9基因定点突变体系构建与大豆抗旱相关gma-miR160功能研究[D]. 博士学位论文, 西北农林科技大学, 导师:奚亚军, 张辉, pp. 1-26. (Sun X J.2015. Construction of CRISPR/Cas9 site-directed mutagenesis system and functional research of drought-responsive soybean gma-miR160[D]. Thesis for Ph.D., Northwest A&F University, Supervisor: Xi Y J, Zhang H, pp. 1-26.) [8] 王超凡, 张大健. 2020. 基因编辑技术在大豆种质资源研究中的利用[J]. 植物遗传资源学报, 21(1): 26-32. (Wang C F, Zhang D J.2020. Application of gene editing in studies of soybean germplasm resources[J]. Journal of Plant Genetic Resources, 21(1): 26-32.) [9] 王大伟. 2019. 调控大豆生育期的分子功能验证[D]. 硕士学位论文, 中国科学院大学, 导师: 刘宝辉, 孔凡江, pp. 1-7. (Wang D W.2019. Molecular function verification of GmLUX regulating soybean growth period[D]. Thesis for M.S., University of Chinese Academy of Sciences, Supervisor: Liu B H, Kong F J, pp. 1-7.) [10] 闫丽. 2017. 利用CRISPR/Cas9技术创制大豆GmWRI1a基因突变体[D]. 硕士学位论文, 东北农业大学, 导师: 王志坤, pp. 1-13. (Yan L.2017. Creation of GmWRI1a gene soybean mutation plants by CRISPR/Cas9[D]. Thesis for M.S., Northeast Agriculture University, Supervisor: Wang Z K, pp. 1-13.) [11] 闫玉川. 2020. 利用SpCas9变体拓宽大豆基因组编辑范围[D]. 硕士学位论文, 南昌大学, 导师: 朱友林, 王东, pp. 1-8. (Yan Y C.2020. The scope of soybean genome editing was broadened by using the SpCas9 variants[D]. Thesis for M.S., Nanchang University, Supervisor: Zhu Y L, Wang D, pp. 1-8.) [12] 张文斗. 2019. GmNINa下调GmBAKle表达促进结瘤的机制研究[D]. 硕士学位论文, 华中农业大学, 导师: 李霞, pp. 1-13. (Zhang W D.2019. Mechanism of GmNINa down-regulating expression of GmBAK1e and promoting nodulation of soybean[D]. Thesis for M.S., Huazhong Agriculture University, Supervisor: Li X, pp. 1-13.) [13] 张鑫. 2019. 大豆'天隆一号'突变体库及CRISPR/Cas9技术平台的初步构建[D]. 硕士学位论文, 上海师范大学, 导师: 朱骏, 王彪, pp. 1-13. (Zhang X.2019. Preliminary construction of soybean 'Tianlong 1' mutant library and CRISPR/Cas9 technology platform[D]. Thesis for M.S., Shanghai Normal University, Supervisor: Zhu J, Wang B, pp. 1-13.) [14] 钟宣伯. 2020. HD-Zip转录因子GmHdz4对大豆耐旱性影响的研究[D]. 硕士学位论文, 浙江大学, 导师: 唐桂香, pp. 1-13. (Zhong X B.2020. Study on the effect of HD-Zip transcription factor GmHdz4 on soybean (Glycine max (L.) Merr.) drought tolerance[D]. Thesis for M.S., Zhejiang University, Supervisor: Tang G X, pp. 1-13.) [15] Abudayyeh O O, Gootenberg J S, Essletzbichler P, et al.2017. RNA targeting with CRISPR-Cas13a[J]. Nature, 550(7675): 280-284. [16] Bao A L,Chen H F, Chen L M, et al.2019. CRISPRCas9-mediated targeted mutagenesis of GmSPL9 genes alters plant architecture in soybean[J]. BMC Plant Biology, 19(1): 131. [17] Bai M Y, Yuan J H, Kuang H Q, et al.2020. Generation of a multiplex mutagenesis population via pooled CRISPR-Cas9 in soybean[J]. Plant Biotechnology Journal, 18(3): 721-731. [18] Bao A L, Zhang C J, Huang Y, et al.2020. Genome editing technology and application in soybean improvement[J]. Oil Crop Science, 5(1): 31-40. [19] Bibikova M, Golic M, Golic K J, et al.2002. Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases[J]. Genetics, 161(3): 1169-1175. [20] Bibikova M, Beumer K, Trautman J K, et al.2003. Enhancing gene targeting with designed zinc finger nucleases[J]. Science, 300(5620): 764. [21] Boch J, Scholze H, Schornack S, et al.2009. Breaking the code of DNA binding specificity of TAL-Type Ⅲ effectors[J]. Science, 326(5959): 1509-1512. [22] Bonawitz N D, Ainley W M, Itaya A, et al.2019. Zinc finger nuclease-mediated targeting of multiple transgenes to an endogenous soybean genomic locus via non-homologous end joining[J]. Plant Biotechnology Journal, 17(4): 750-761. [23] Cai Y P, Chen L, Liu X J, et al.2015. CRISPR/Cas9-mediated genome editing in soybean hairy roots[J]. PLOS ONE, 10(8): e0136064. [24] Cai Y P, Chen L, Sun S, et al.2018. CRISPR/Cas9-mediated deletion of large genomic fragments in soybean[J]. International Journal of Molecular Sciences, 19(12): 3835. [25] Cai Y P, Chen L, Zhang Y, et al.2020. Target base editing in soybean using a modified CRISPR/Cas9 system[J]. Plant Biotechnology Journal, 18(10): 1996-1998. [26] Cai Y P, Wang L W, Chen L, et al.2020. Mutagenesis of GmFT2a and GmFT5a mediated by CRISPR/Cas9 contributes for expanding the regional adaptability of soybean[J]. Plant Biotechnology Journal, 18(1): 298-309. [27] Campbell B W, Hoyle J W, Bucciarelli B, et al.2019. Functional analysis and development of a CRISPR/Cas9 allelic series for a CPR5 ortholog necessary for proper growth of soybean trichomes[J]. Scientific Reports, 9(1): 14757. [28] Cheng Q, Dong L D, Su T, et al.2019. CRISPR/Cas9-mediated targeted mutagenesis of GmLHY genes alters plant height and internode length in soybean[J]. BMC Plant Biology, 19(1): 562. [29] Christian M, Cermak, T, Doyle E L, et al.2010. Targeting DNA double-strand breaks with TAL effector nucleases[J]. Genetics, 186(2): 757-761. [30] Curtin S J, Xiong Y, Michno J M, et al.2018. CRISPR/Cas9 and TALENs generate heritable mutations for genes involved in small RNA processing of Glycine max and Medicago truncatula[J]. Plant Biotechnology Journal, 16(6): 1125-1137. [31] Curtin S J, Zhang F, Sander J D, et al.2011. Targeted mutagenesis of duplicated genes in soybean with zinc-finger nucleases[J]. Plant Physiology, 156(2): 466-473. [32] Demorest Z L, Coffman A, Baltes N J, et al.2016. Direct stacking of sequence-specific nuclease-induced mutations to produce high oleic and low linolenic soybean oil[J]. BMC Plant Biology, 16(1): 225. [33] Do P T, Nguyen C X, Bui H T, et al.2019. Demonstration of highly efficient dual gRNA CRISPR/Cas9 editing of the homeologous GmFAD2-1A and GmFAD2-1B genes to yield a high oleic, low linoleic and alpha-linolenic acid phenotype in soybean[J]. BMC Plant Biology, 19(1): 311. [34] Du H Y, Zeng X R, Zhao M, et al.2016. Efficient targeted mutagenesis in soybean by TALENs and CRISPR/Cas9[J]. Journal of Biotechnology, 217: 90-97. [35] Feng X X, Yang S X, Tang K Q, et al.2019. GmPGL1, a thiamine thiazole synthase, is required for the biosynthesis of thiamine in soybean[J]. Frontiers in Plant Science, 10: 1546. [36] Garneau J E, Dupuis M E, Villion M, et al.2010. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA[J]. Nature, 468(7320): 67-71. [37] Gaudelli N M, Komor A C, Rees H A, et al.2017. Programmable base editing of A*T to G*C in genomic DNA without DNA cleavage[J]. Nature, 551(7681): 464-471. [38] Han J, Guo B, Guo Y, et al.2019. Creation of early flowering germplasm of soybean by CRISPR/Cas9 technology[J]. Frontiers in Plant Science, 10: 1446. [39] Harrington L B, Ma E, Chen J S, et al.2020. A scoutRNA is required for some type Ⅴ CRISPR-Cas systems[J]. Molecular Cell, 79(3): 1-9. [40] Haun W, Coffman A, Clasen B M, et al.2014. Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family[J]. Plant Biotechnology Journal, 12(7): 934-940. [41] ISAAA.2018. Global Status of Commercialized Biotech/GM Crops 2018. ISAAA Brief No. 54. ISAAA: Ithaca, New York. [42] Jacobs T B, Lafayette P R, Schmitz R J, et al.2015. Targeted genome modifications in soybean with CRISPR/Cas9[J]. BMC Plant Biology, 15: 16. [43] Kang B C, Yun J Y, Kim S T, et al.2018. Precision genome engineering through adenine base editing in plants[J]. Nature Plants, 4(7): 427-431. [44] Kim H, Kim S T, Ryu J, et al.2017. CRISPR/Cpf1-mediated DNA-free plant genome editing[J]. Nature Communications, 8: 14406. [45] Komor A C, Kim Y B, Packer M S, et al.2016. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage[J]. Nature, 533(7603): 420-424. [46] Koonin E V, Makarova K S, Zhang F.2017. Diversity, classification and evolution of CRISPR-Cas systems[J]. Current Opinion in Microbiology, 37: 67-78. [47] Li C L, Nguyen V, Liu J, et al.2019. Mutagenesis of seed storage protein genes in soybean using CRISPR/Cas9[J]. BMC Research Notes, 12(1), 176. [48] Li J F, Norville J E, Aach J, et al.2013. Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9[J]. Nature Biotechnology, 31(8): 688-91. [49] Li M, Chen R, Jiang Q Y, et al.2020. GmNAC06, a NAC domain transcription factor enhances salt stress tolerance in soybean[J]. Plant Molecular Biology, 105(3):333-345. [50] Li Z B, Cheng Q, Gan Z R, et al.2020. Multiplex CRISPR/Cas9-mediated knockout of soybean LNK2 advances flowering time[J]. The Crop Journal, DOI: 10.1016/j.cj.2020.09.005. [51] Lyu X G, Cheng Q C, Qin C, et al.2020. GmCRY1s modulate gibberellin metabolism to regulate soybean shade avoidance in response to reduced blue light[J]. Molecular Cell, 14(2): 298-314. [52] Ma J J, Yang S X, Wang D M, et al.2020. Genetic mapping of a light-dependent lesion mimic mutant reveals the function of coproporphyrinogen Ⅲ oxidase homolog in soybean[J]. Frontiers in Plant Science, 11: 557. [53] Nekrasov V, Staskawicz B, Weigel D, et al.2013. Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease[J]. Nature Biotechnology, 31(8): 691-693. [54] Schmutz J, Cannon S B, Schlueter J, et al.2010. Genome sequence of the palaeopolyploid soybean[J]. Nature, 463(7278): 178-183. [55] Sugano S, Hirose A, Kanazashi Y, et al.2020. Simultaneous induction of mutant alleles of two allergenic genes in soybean by using site-directed mutagenesis[J]. BMC Plant Biology, 20(1): 513. [56] Sun X J, Hu Z, Chen R, et al.2015. Targeted mutagenesis in soybean using the CRISPR-Cas9 system[J]. Scientific Reports, 5: 10342. [57] Symington L S, Gautier J.2011. Double-strand break end resection and repair pathway choice[J]. Annual Review of Genetics, 45: 247-271. [58] Teng F, Cui T T, Feng G H, et al.2018. Repurposing CRISPR-Cas12b for mammalian genome engineering[J]. Cell Discovery, 4: 63. [59] Virdi K S, Spencer M, Stec A O, et al.2020. Similar seed composition phenotypes are observed from CRISPR-generated in-frame and knockout alleles of a soybean KASI ortholog[J]. Frontiers in Plant Science, 11: 1005. [60] Wang D M, Liang X X, Bao Y Z, et al.2020. A malectin-like receptor kinase regulates cell death and pattern-triggered immunity in soybean[J]. EMBO reports,21(11):e50442. [61] Wang J, Kuang H, Zhang Z, et al.2020. Generation of seed lipoxygenase-free soybean using CRISPR-Cas9[J]. The Crop Journal, 8(3): 432-439. [62] Wang L W, Sun S, Wu T T, et al.2020. Natural variation and CRISPR/Cas9-mediated mutation in GmPRR37 affect photoperiodic flowering and contribute to regional adaptation of soybean[J]. Plant Biotechnology Journal, 18(9): 1869-1881. [63] Wilson R.F.Soybean: Market Driven Research Needs Genetics and Genomics of Soybean (Stacey, G., ed)[M]. New York: Springer. 2008, pp. 3-15. [64] Wu N, Lu Q, Wang P, et al.2020. Construction and analysis of GmFAD2-1A and GmFAD2-2A soybean fatty acid desaturase mutants based on CRISPR/Cas9 technology[J]. International Journal of Molecular Sciences, 21(3), 1104. [65] Xu H, Zhang L X, Zhang K, et al.2020. Progresses, challenges, and prospects of genome editing in soybean (Glycine max)[J]. Frontiers in Plant Science, 11, 571138. [66] Zetsche B, Gootenberg J S, Abudayyeh O O, et al.2015. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system[J]. Cell, 163(3): 759-771. [67] Zhang P P, Du H Y, Wang J, et al.2020. Multiplex CRISPR/Cas9-mediated metabolic engineering increases soya bean isoflavone content and resistance to soyabean mosaic virus[J]. Plant Biotechnology Journal, 18(6): 1384-1395. [68] Zhu H C, Li C, Gao C X.2020. Applications of CRISPR-Cas in agriculture and plant biotechnology[J]. Nature Reviews Molecular Cell Biology, 21(11): 661-677. [69] Zong Y, Wang Y, Li C, et al.2017. Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion[J]. Nature Biotechnology, 35(5): 438-440. |
|
|
|