|
|
Identification of WRKY Gene Family and Their Expression Analysis Under Low-temperature Stress in Melon (Cucumis melo) |
ZHANG Gao-Yuan*, WEI Bing-Qiang |
College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China |
|
|
Abstract Plant WRKY transcription factors play important regulatory roles in plant response to low temperature. However, there are few researches about genome-wide identification and characterization of melon (Cucumis melo) WRKY genes and their expression patterns under low-temperature stress. Thus, in this study, the genome-wide identification of WRKY genes and bioinformatics analysis were carried out in melon, and the expression patterns under low-temperature stress were detected by qRT-PCR. The results showed that there were 59 CmWRKYs identified in melon, which unevenly distributed on the chromosomes. Based on phylogenetic analysis, the CmWRKY proteins were classified into 3 groups (Ⅰ~Ⅲ) and the second group was further divided into 5 subgroups (Ⅱa~e). Synteny analysis showed that there were 28 collinear gene pairs in melon and Arabidopsis thaliana WRKY gene family and 10 pairs of CmWRKYs were identified as segmental duplication. Cis-regulatory elements related to stress and hormone responses were found in the promoters of CmWRKYs. Gene Ontology (GO) analysis displayed that CmWRKYs widely participated in physiological processes such as biological process, cellular component and molecular function. The qRT-PCR detection showed that the expression of 11 CmWRKYs was significantly up-regulated under low temperature stress. The results of this study can provide reference for further cloning of CmWRKYs and analysis of low temperature tolerance function.
|
Received: 28 February 2020
|
|
Corresponding Authors:
* zhanggy@gsau.edu.cn
|
|
|
|
[1] 车永梅, 孙艳君, 卢松冲,等. 2018. AtWRKY40参与拟南芥干旱胁迫响应过程[J]. 植物生理学报, 54(3): 456-464. (Che Y M, Sun Y J, Lu S C, et al.2018. AtWRKY40 functions in drought stress response in Arabidopsis thaliana[J]. Plant Physiology Journal, 54(3): 456-464.) [2] 付乾堂, 余迪求. 2010. 拟南芥AtWRKY25、AtWRKY26和AtWRKY33在非生物胁迫条件下的表达分析[J]. 遗传, 32(8): 848-856. (Fu Q T, Yu D Q.2010. Expression profiles of AtWRKY25, AtWRKY26 and AtWRKY33 under abiotic stresses[J]. Hereditas, 32(8): 848-856.) [3] 李猛, 吕亭辉, 邢巧娟, 等. 2018. 瓜类蔬菜耐低温性评价与调控研究进展[J]. 园艺学报, 45(9): 1761-1777. (Li M, Lü T H, Xing Q J, et al.2018. Research progress on evaluation and regulation of chilling tolerance in cucurbitaceous vegetables[J]. Acta Horticulturae Sinica, 45(9): 1761-1777.) [4] 王芳, 王淇, 赵曦阳. 2019. 低温胁迫下植物的表型及生理响应机制研究进展[J]. 分子植物育种, 17(15): 5144-5153. (Wang F, Wang Q, Zhao X Y.2019. Research progress of phenotype and physiological response mechanism of plants under low temperature stress[J]. Molecular Plant Breeding, 17(15): 5144-5153.) [5] 肖玉洁, 李泽明, 易鹏飞, 等. 2018. 转录因子参与植物低温胁迫响应调控机理的研究进展[J]. 生物技术通报, 34(12): 1-9. (Xiao Y J, Li Z M, Yi P F, et al.2018. Research progress on response mechanism of transcription factors involved in plant cold stress[J]. Biotechnology Bulletin, 34(12): 1-9.) [6] 张红, 姜景彬, 许向阳, 等. 2016. 番茄WRKY基因家族的生物信息学分析[J]. 分子植物育种, 14(8): 1965-1976. (Zhang H, Jiang J B, Xu X Y, et al.2016. Bioinformatics analysis of WRKY gene family in tomato[J]. Molecular Plant Breeding, 14(8): 1965-1976.) [7] Ali M A, Azeem F, Nawaz M A, et al.2018. Transcription factors WRKY11 and WRKY17 are involved in abiotic stress responses in Arabidopsis[J]. Journal of Plant Physiology, 226: 12-21. [8] Bailey T L, Williams N, Misleh C, et al.2006. MEME: Discovering and analyzing DNA and protein sequence motifs[J]. Nucleic Acids Research, 34(Web Server issue): W369-W373. [9] Barker M S, Baute G J, Liu S L.2012. Duplications and turnover in plant genomes[J]. Plant Genome Diversity, 1: 155-169. [10] Chen L, Yang Y, Liu C, et al.2015. Characterization of WRKY transcription factors in Solanum lycopersicum reveals collinearity and their expression patterns under cold treatment[J]. Biochemical and Biophysical Research Communications, 464(3): 1-7. [11] Chojnacki S, Cowley A, Lee J, et al.2017. Programmatic access to bioinformatics tools from EMBL-EBI update: 2017[J]. Nucleic Acids Research, 45(W1): W550-W553. [12] Chou K C, Shen H B.2010. A new method for predicting the subcellular localization of eukaryotic proteins with both single and multiple sites: Euk-mPLoc 2.0[J]. PLOS ONE, 5(4): e9931. [13] Conesa A, Götz S.2008. Blast2GO: A comprehensive suite for functional analysis in plant genomics[J]. International Journal of Plant Genomics, 619832. DOI: 10.1155/2008/619832 [14] Emms D, Kelly S.2019. OrthoFinder: Phylogenetic orthology inference for comparative genomics[J]. Genome Biology 20(1): 238-252. [15] Eulgem T, Rushton PJ, Robatzek S, et al.2000. The WRKY superfamily of plant transcription factors. Trends in Plant Science, 5(5):199-206. [16] El-Gebali S, Mistry J, Bateman A, et al.2019. The Pfam protein families database in 2019[J]. Nucleic Acids Research, 47(D1): D427-D432. [17] Felsenstein J.1985. Confidence limits on phylogenies: An approach using the bootstrap[J]. Evolution, 39(4): 783-791. [18] Finn R D, Clements J, Eddy S R.2011. HMMER web server: Interactive sequence similarity searching[J]. Nucleic Acids Research, 39(Web Server issue): W29-W37. [19] Garcia-Mas J, Benjak A, Sanseverino W, et al.2012. The genome of melon (Cucumis melo L.)[J]. Proceedings of the National Academy of Sciences of the USA, 109(29): 11872-11877. [20] He Z, Zhang H, Gao S, et al.2016. Evolview v2: An online visualization and management tool for customized and annotated phylogenetic trees[J]. Nucleic Acids Research, 44(W1): W236-W241. [21] Kim C, Vo K T X, Nguyen C D, et al.2016. Functional analysis of a cold-responsive rice WRKY gene, OsWRKY71[J]. Plant Biotechnology Reports, 10(1): 13-23. [22] Krzywinski M, Schein J, Birol I, et al.2009. Circos: An information aesthetic for comparative genomics[J]. Genome Research, 19(9): 1639-1645. [23] Kumar S, Stecher G, Li M, et al.2018. MEGA X: Molecular evolutionary genetics analysis across computing platforms[J]. Molecular Biology and Evolution, 35(6): 1547-1549. [24] Lescot M, Déhais P, Thijs G, et al.2002. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences[J]. Nucleic Acids Research, 30(1): 325-327. [25] Ling J, Jiang W, Zhang Y, et al.2011. Genome-wide analysis of WRKY gene family in Cucumis sativus[J]. BMC Genomics, 12(1): 471. [26] Lippok B, Birkenbihl R P, Rivory G, et al.2007. Expression of AtWRKY33 encoding a pathogen-or PAMP-responsive WRKY transcription factor is regulated by a composite DNA motif containing W box elements[J]. Molecular Plant-Microbe Interactions, 20(4): 420-429. [27] Livak K J, Schmittgen T D.2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-∆∆Ct method[J]. Methods, 25(4): 402-408. [28] Nei M, Kumar S.2000. Molecular Evolution and Phylogenetics[M]. Oxford University Press, New York, pp. 235-296. [29] Rushton P J, Somssich I E, Ringler P, et al.2010. WRKY transcription factors[J]. Trends in Plant Science, 15(5): 247-258. [30] Saitou N, Nei M.1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees[J]. Molecular Biology and Evolution, 4(4): 406-425. [31] Tang J, Wang F, Hou X L, et al.2014. Genome-wide fractionation and identification of WRKY transcription factors in Chinese cabbage (Brassica rapa ssp. pekinensis) reveals collinearity and their expression patterns under abiotic and biotic stresses[J]. Plant Molecular Biology Reporter, 32(4): 781-795. [32] Tao Z, Kou Y J, Liu H B, et al.2011. OsWRKY45 alleles play different roles in abscisic acid signalling and salt stress tolerance but similar roles in drought and cold tolerance in rice[J]. Journal of Experimental Botany, 62(14): 4863-4874. [33] Verk M C, Pappaioannou D, Neeleman L, et al.2008. A novel WRKY transcription factor is required for induction of PR-1a gene expression by salicylic acid and bacterial elicitors[J]. Plant Physiology, 146(4): 1983-1995. [34] Walther D, Brunnemann R, Selbig J.2007. The regulatory code for transcriptional response diversity and its relation to genome structural properties in A. thaliana[J]. PLOS Genetics, 3(2): e11. [35] Wang F, Hou X, Tang J, et al.2012a. A novel cold-inducible gene from Pak-choi (Brassica campestris ssp. chinensis), BcWRKY46, enhances the cold, salt and dehydration stress tolerance in transgenic tobacco[J]. Molecular Biology Reports, 39(4): 4553-4564. [36] Wang L, Zhu W, Fang L, et al.2014. Genome-wide identification of WRKY family genes and their response to cold stress in Vitis vinifera[J]. BMC Plant Biology, 14(1): 103. [37] Wang Y, Tang H, Debarry J D, et al.2012b. MCScanX: A toolkit for detection and evolutionary analysis of gene synteny and collinearity[J]. Nucleic Acids Research, 40(7): e49. [38] Yang X, Li H, Yang Y, et al.2018. Identification and expression analyses of WRKY genes reveal their involvement in growth and abiotic stress response in watermelon (Citrullus lanatus)[J]. PLOS ONE, 13(1): e0191308. [39] Zhang H F, Wei C H, Yang X Z, et al.2017. Genome-wide identification and expression analysis of calcium-dependent protein kinase and its related kinase gene families in melon (Cucumis melo L.)[J]. PLOS ONE, 12(4): e0176352. [40] Zhang J Z.2003. Evolution by gene duplication: An update[J]. Trends in Ecology and Evolution, 18(6): 292-298. [41] Zhang Y, Wang L.2005. The WRKY transcription factor superfamily: Its origin in eukaryotes and expansion in plants[J]. BMC Evolutionary Biology, 5: 1-12. [42] Zhang Y, Yu H, Yang X, et al.2016. CsWRKY46, a WRKY transcription factor from cucumber, confers cold resistance in transgenic-plant by regulating a set of cold-stress responsive genes in an ABA-dependent manner[J]. Plant Physiology & Biochemistry, 108: 478-487. [43] Zou C S, Jiang W B, Yu D Q.2010. Male gametophyte-specific WRKY34 transcription factor mediates cold sensitivity of mature pollen in Arabidopsis[J]. Journal of Experimental Botany, 61(14): 3901-3914. |
|
|
|