|
|
Prokaryotic Expression and Purification of Bt-Cry5Aa Insecticidal Gene and Its Identification in Gossypium |
MA Xiao*, ZHAO Shi-Hao*, WANG Feng, HE Wen, CHEN Jin-Xiang, ZHANG Qiu-Ping**, ZHOU Zhong-Hua** |
College of Agronomy, Hunan Agricultural University, Changsha 410128, China |
|
|
Abstract The single transgenic Bacillus thuringiensis (Bt) gene Cry1Ab/Cry1Ac insect-resistant cotton (Gossypium) is a large-scale planted crop in China. With the increase of planting time and area, the resistance of pests to Bt toxin protein increases, new Bt gene research work is necessary. Cry5Aa is a novel Bt insecticidal gene with resistance to both Lepidoptera and Nematodes, was successfully transferred into cotton by Cotton Research Institute of Hunan Agricultural University and a stable genetic 'JX0010', 'JX0020' strain was obtained. In this study, the Cry5Aa full-length gene prokaryotic expression vector was constructed, the prokaryotic expression induction conditions were optimized, and its expression in the Bt-Cry5Aa gene of transgenic cotton line was identified. The results showed that the protein expression was the highest when induced at 37 ℃ with 220 r/min 1.0 mmol/L isopropyl-beta-D-thiogalactopyranoside (IPTG) for 4 h. Through Western blot experiment, it was found that the molecular weight of the protein was 79 kD, which was consistent with the theoretical value; at the same time, the protein existed in the form of inclusion body and was purified by Glutathione-Sepharose 4B small particle affinity chromatography. The identification experiment of transgenic cotton lines with Bt-Cry5Aa gene showed that Cry5Aa gene could express insecticidal protein in transgenic line 'JX0010', 'JX0020', and the expression of Cry5Aa toxin protein of 'JX0010' was higher than that of 'JX0020' in different periods and different parts of cotton. The expression in bud stage was the highest, and the spatial distribution was the highest in leaves. In this study, the prokaryotic expression vector of Bt-Cry5Aa insecticidal gene was constructed, the purified protein of Cry5Aa was obtained, and its expression in cotton was preliminarily identified, which provides a theoretical basis for the further application of Bt-Cry5Aa insecticidal gene in cotton.
|
Received: 08 January 2020
|
|
Corresponding Authors:
** , zhanqiuping@hunau.edu.cn; zhouzhonghua1976@hotmail.com. * The authors who contribute equally
|
|
|
|
[1] 陈耕, 何珊, 韩兰芝, 等. 2018. 转cry1Ab+cry1C双价抗虫水稻对二化螟的抗性评价[J]. 中国生物防治学报, 34(1): 71-78. (Chen G, He S, Han L Z, et al.2018. Evaluation of transgenic cry1Ab+cry1C rice lines for its resistance to Chilo suppressalis[J]. Chinese Journal of Biological Control, 34(1): 71-78.) [2] 陈松, 吴敬音, 程德荣, 等. 1999. 转Bt基因棉Bt毒蛋白的ELISA检测方法的研究[J]. 棉花学报, 05: 259-267. (Chen S, Wu J Y, Cheng D R, et al.1999. On the enzyme-linked immunosorbent assay of Bacillus thuringiensis insecticidal protein expressed in transgenic cotton[J]. Cotton Science, 05: 259-267.) [3] 陈中义, 李丽华, 张杰, 等. 2002. 双价苏云金芽孢杆菌cry基因载体构建及其在大肠杆菌中表达杀虫活性[J]. 农业生物技术学报, 10(3): 272-277. (Chen Z Y, Li L H, Zhang J, et al.2002. Construction of recombined plasmid carrying two Bacillus thuringiensis cry genes with kanamycin resistant gene and bioassay of their co-expression insecticidal activities in Escherichia coli[J]. Journal of Agricultural Biotechnology, 10(3): 272-277.) [4] 冯頔, 张莉弘, 魏毅, 等. 2011. 苏云金芽孢杆菌cry1基因的克隆、植物表达载体的构建及转化大豆[J]. 中国农学通报, 27(7): 222-226. (Feng D, Zhang L H, Wei Y, et al.2011. Cloning construction of plant expression vector and establishment of transformation system in soybean of the cry1 gene from Bacillus thuringiensis[J]. Chinese Agricultural Science Bulletin, 27(7): 222-226.) [5] 郭三堆, 王远, 孙国清, 等. 2015. 中国转基因棉花研发应用二十年[J]. 中国农业科学, 48(17): 3372-3387. (Guo S D, Wang Y, Sun G Q, et al.2015. Twenty years of research and application of transgenic cotton in China[J]. Scientia Agricultura Sinica. 48(17): 3372-3387.) [6] 郭忠军, 陈全家, 许春华, 等. 2012. 棉花叶片蛋白质组双向电泳技术的优化[J]. 棉花学报, 24(5): 468-472. (Guo Z J, Chen Q J, Xu C H, et al.2012. Optimization of two-dimensional electrophoresis for cotton leaf proteomics[J]. Cotton Science, 24(5): 468-472.) [7] 何珊, 徐杨洋, 韩兰芝, 等. 2017. 二化螟Cry1Ac汰选品系对不同Bt蛋白的敏感性[J]. 植物保护学报, 44(3): 371-376. (He S, Xu Y Y, Han L Z, et al.2017. Variation in the susceptibility of a Chilo suppressalis Cry1Ac-selective strain to different Bacillus thuringiensis insecticidal proteins[J]. Journal of Plant Protection, 44(3): 371-376.) [8] 胡宏源, 夏立秋, 史红娟, 等. 2004. 苏云金芽孢杆菌伴孢晶体20 kb DNA中cry1Ac基因的克隆、高效表达和生物活性研究[J]. 生物工程学报, 20(5): 655-661. (Hu H Y, Xia L Q, Shi H J, et al.2004. Cloning and superexpression of Cry1Ac gene from 20 kb DNA associated with Bacillus thuringiensis Cry1A crystal protein[J]. Chinese Journal of Biotechnology, 20(5): 655-661.) [9] 李海涛, 姚江, 郭巍, 等. 2005. 苏云金芽孢杆菌 cry2Aa基因的克隆、表达与活性[J]. 农业生物技术学报, 13(6): 787-791. (Li H T, Yao J, Guo W, et al.2005. Cloning and expression of cry2Aa genes from isolates of Bacillus thuringiensis and their bioactivity[J]. Journal of Agricultural Biotechnology, 13(6): 787-791.) [10] 李雪雁, 李照会, 许维岸. 2003. 苏云金芽孢杆菌cry基因研究进展[J]. 昆虫知识, 40(01): 9-13. (Li X Y, Li Z H, Xu W A.2003. Research advances on the cry genes of Bacillus thuringiensis[J]. Entomological Knowledge, 40(01): 9-13. [11] 雒珺瑜, 崔金杰, 张帅, 等. 2017. 盐碱土壤转Bt基因棉花外源蛋白表达量时空变化及对抗虫性的影响[J]. 生态学报, 37(16): 5474-5481. (Luo J Y, Cui J J, Zhang S, et al.2017. The effects of temporal and spatial variation of exogenous protein of transgenic Bt cotton to insect resistance in saline-alkali soil[J]. Acta Ecologica Sinica, 37(16): 5474-5481.) [12] 牛林. 2017. 转Bt抗虫棉对非靶标昆虫的安全性评价[D]. 博士学位论文, 华中农业大学, 导师: 雷朝亮, pp. 64-71. (Niu L.2017. Risk assessment of insect-resistant transgenic BT Cotton on non-target insects[D]. Thesis for Ph.D., HuaZhong Agricultural University. Supervisor: Lei C L, pp: 64-71.) [13] 任莹博, 宋福平, 陈中义, 等. 2004. 苏云金芽孢杆菌cry1Aa14基因的分离、克隆及其表达[J]. 农业生物技术学报, 12(2): 188-191. (Ren Y B, Song F P, Chen Z Y, et al.2004. Cloning and expression of cry1Aa14 gene from Bacillus thuringiensis[J]. Journal of Agricultural Biotechnology, 12(2): 188-191.) [14] 芮昌辉, 范贤林, 郭三堆, 等. 2001. 双价基因(Bt+CpTI)抗虫棉对棉铃虫的杀虫活性及抑制生长作用[J]. 棉花学报, 13(6): 337-341. (Rui C H, Fan X L, Guo S D, et al.2001. Control Efficacy of transgenic cotton expressing Bt& CpTI genes to Helicoverpa armigera[J]. Cotton Scienc, 13(6): 337-341.) [15] 束长龙, 张风娇, 黄颖, 等. 2016. Bt杀虫基因研究现状与趋势[J]. 中国科学:生命科学, 46: 548-555. (Shu C L, Zhang F J, Huang Y, et al.2016. Current status and research trends of Bt insecticidal gene[J]. Science China Life Science, 46(5): 548-555.) [16] 苏慧琴, 束长龙, 何康来, 等. 2010. 苏云金芽孢杆菌cry9Aa基因的克隆﹑表达及活性分析[J]. 植物保护学报, 37(6): 541-546. (Su H Q, Shu C L, He K L, et al.2010. Cloning, expression and insecticidal activity of two cry9Aa genes from Bacillus thuringiensis strains[J]. Acta Phytophylacica Sinica, 37(6): 541-546.) [17] 魏纪珍. 2016 棉铃虫受体蛋白在Cry1Ac、Cry2Ab交互抗性中的作用[D]. 博士学位论文, 中国农业科学院, 导师: 郭予元, pp: 125-130. (Wei J Z.2016. The roles of receptors in the mechanism of cross-resistance between Cry1Ac and Cry2Ab in cotton bollworm[D]. Thesis for Ph.D., Chinese Academy of Agricultural Sciences Dissertation, Supervisor: Guo Y Y, pp: 125-130.) [18] 徐丽娜, 胡本进, 李路, 等. 2015. 转Bt基因棉花杀虫蛋白表达规律及对棉铃虫控制作用研究[J]. 安徽农业大学学报, 42(5): 797-802. (Xu L N, Hu B J, Li L, et al.2015. Expression patterns of Bacillus thuringiensis insecticidal protein and the control to cotton bollworm of different Bt transgenic cotton[J]. Journal of Anhui Agricultural University, 42(5): 797-802.) [19] 赵灿, 张春鸽, 束长龙, 等. 2013. 基于高分辨熔解分析的cry1I类基因的克隆、表达及活性分析[J]. 中国生物防治学报, 29(1): 68-73. (Zhao C, Zhang C G, Shu C L, et al.2013. Identification of Novel cry1I-type Genes from Bacillus thuringiensis HD-12 Strain on the Basis of High Resolution Melting Assay[J]. Chinese Journal of Biological Control, 29(1): 68-73.) [20] 赵冬晓, 刘标. 2017. 棉铃虫对转Bt基因棉花的行为反应[J]. 环境昆虫学报, 39(1): 152-159. (Zhao D X, Liu B.2017. Behavioral responses of Helicoverpa armigera (Hübner) larvae to transgenic Bt cotton[J]. Journal of Environmental Entomology, 39(1): 152-159) [21] Carrière Y, Degain B, Unnithan G C, et al.2019. Seasonal declines in Cry1Ac and Cry2Ab concentration in maturing cotton favor faster evolution of resistance to pyramided Bt Cotton in Helicoverpa zea (Lepidoptera: Noctuidae)[J]. Journal of Economic Entomology, 112(6): 2907-2914. [22] Klevebring D, Bjursell M, Emanuelsson O, et al.2010. In-depth transcriptome analysis reveals novel TARs and prevalent antisense transcription in human cell lines[J]. PLOS ONE, 5(3): e9762. [23] Martin P A, TRAVERS R S.1989. Worldwide abundance and distribution of Bacillus thuringiensis isolates[J]. Applied and Environmental Microbiology, ,55(10):2437-2442. [24] Puntheeranurak T, Uawithya P, Potvin L, et al.2004. Ion channels formed in planar lipid bilayers by the dipteran-specific Cry4B Bacillus thuringiensis toxin and its alpha1-alpha5 fragment[J]. Molecular Membrane Biology, 21(1): 67-74. [25] PangA S D, Gringorten J L, van Frankenhuyzen K.et al.2002. Interaction between Cry9Ca and two Cry1A δ-endotoxins from Bacillus thuringiensis in larval toxicity and binding to brush border membrane vesicles of the spruce budworm, Choristoneura fumiferana Clemens[J]. FEMS Microbiology Letters, 215(1): 109-114. [26] Schnepf E, Crickmore N, van R J, et al.1998. Bacillus thuringiensis and its pesticidal crystal proteins[J]. Microbiology and Molecular Biology Reviews, 62(3): 775-806. [27] Xue J, Liang G M, Crickmore N, et al.2008. Cloning and charac-terization of a novel Cry1A toxin from Bacillus thuringiensis with high toxicity to the Asian cornborerand other lepidopteran insects[J]. FEMS Microbiology Letters, 280(1): 95-101. |
|
|
|