|
|
Effects of Three Feeds on Serum Enzyme Activity, Intestinal Structure and Bacterial Flora of Ctenopharyngodon idellus |
JIN Ya-Qi1, 2, YU Er-Meng1, *, ZHANG Kai1, LI Zhi-Fei1, WANG Guang-Jun1, XIE Jun1, YU De-Guang1, SUN Jin-Hui2, WEI Dong2, GONG Wang-Bao1, TIAN Jing-Jing1 |
1 Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; 2 College of Fisheries, Tianjin Agricultural University, Tianjin 300384, China |
|
|
Abstract Different feeds will affect the metabolism and the intestinal structure and flora of grass carp (Ctenopharyngodon idellus), which further change its muscle quality and immunity. So, the purpose of this study was to explore the effects of three feeds on the metabolism and growth of grass carp, including grass feed (Pennisetum sinese), broad bean (Vicia faba) and artificial compound feed. Serum enzyme activities related to metabolism and intestinal histological were detected, and then the abundance of intestinal flora and changes in metabolic pathways were further analyzed by high-throughput sequencing technology. The results of three feeds showed that, in the grass carp fed with grass feed, there were the highest superoxide dismutase (SOD) activity, integral intestinal structure, the highest abundance of both probiotics and carbohydrate metabolic pathway. Broad bean feeding increased trypsin (TRY) activity, damaged intestinal tract, increased the abundance of pathogenic bacteria and disease transmission pathway. In the grass carp fed with artificial compound feed, the growth rate (74.52%), activity of alkaline phosphatase (ALP) and abundance of glycan biosynthesis and metabolism pathway were highest, and the intestinal tissue structure was relatively complete. These results demonstrated that, in the grass carp, Pennisetum sinese grass meal feed was helpful for maintaining intestinal health and enhancing metabolism, and broad bean led to the intestinal damage and inflammation, and artificial feed caused a certain degree of intestinal inflammation and immune suppression in spite of the highest nutritional value. This study would provide guidance for the selection and matching of different feeds and the research of new artificial feed in grass carp.
|
Received: 01 March 2019
|
|
Corresponding Authors:
boyem34@hotmail.com
|
|
|
|
1 方卫东, 鲁康乐, 张春晓, 等. 2016. 豆粕替代鱼粉对牛蛙生长、体组成、消化酶活力及肝脏生化指标的影响[J]. 水产学报, 40(11): 1742-1752. (Fang W D, Lu K L, Zhang C X, et al.2016. Effects of soybean meal replacing fish meal on growth, body composition, digestive enzyme activity and liver biochemical indexes of rana rana[J]. Acta Aquaculture Sinica, 40(11): 1742-1752. ) 2 丰文雯, 吴山功, 郝耀彤, 等. 2018. 草鱼肠道黏膜厌氧细菌的分离与鉴定[J]. 水生生物学报, 42(01): 11-16. (Feng W W, Wu S G, Hao Y T, et al.2018. Isolation and identification of anaerobic bacteria in grass carp intestinal mucosa[J]. Journal of Aquatic Biology, 42(01): 11-16.) 3 胡俊. 2017.肠道粘附菌群稳态作为鱼类健康评估指标的探究[D]. 博士学位论文,华中农业大学, 导师: 张学振, pp. 6. (Hu J.2017. Study on intestinal adhesion microflora homeostasis as an indicator of fish health assessment[D]. Thesis for Ph.D., HuaZhong Agricultural University, Supervisor: Zhang X Z, pp. 6.) 4 胡毅, 陈云飞, 张德洪, 等. 2018. 不同碳水化合物和蛋白质水平膨化饲料对大规格草鱼生长、肠道消化酶及血清指标的影响[J]. 水产学报, 42(5): 777-786. (Hu Y, Chen Y F, Zhang D H, et al.2018. Effects of bulking feeds with different carbohydrate and protein levels on growth, intestinal digestive enzymes and serum indexes of large grass carp[J]. Acta Aquaculture Sinica, 42(5): 777-786. ) 5 梁萍. 2017. 投喂蚕豆和脆化专用配合饲料对草鱼生长性能及肌肉品质的影响[J]. 中国饲料, (18): 33-37. (Liang P. 2017. Effects of feeding fava bean and embrittlement specific compound feed on growth performance and muscle quality of grass carp[J]. China Feed, (18): 33-37. 6 林琴. 2018. 脆肉鲩池塘养殖[J]. 河北渔业, (03): 35-36. (Lin Q. 2018. Pond breeding of crisped grass carp[J]. Hebei Fisheries, (03): 35-36.) 7 刘邦辉, 王广军, 郁二蒙, 等. 2011.投喂蚕豆和普通配合饲料草鱼肌肉营养成分比较分析及营养评价[J]. 南方水产科学, 7(06): 58-65. (Liu B H, Wang G J, Yu E M, et al.2011. Comparative analysis and nutritional evaluation of muscle nutrient composition of feed fava bean and common compound feed grass carp[J]. Southern Fisheries Science, 7(06): 58-65.) 8 刘云, 孔伟丽, 姜国良, 等. 2008. 2种免疫多糖对刺参组织主要免疫酶活性的影响[J]. 中国水产科学, 15(5): 787-793. (Liu Y, Kong W L, Jiang G L, et al.2008. Effects of two kinds of immunopolysaccharide on the activities of immunoenzymes in sea cucumber, Apostichopus japonicus[J]. Chinese Journal of Fisheries Science, 15(5): 787-793.) 9 谭乾开, 黎华寿. 2006. 脆化草鱼(Ctenopharyngodon idellus C.et V)的病理生理生态学[J]. 生态学报, 26(08): 2749-2756. (Tan G K, Li H S.2006. Pathophysiological ecology of brittle grass carp (Ctenopharyngodon idellus C.et V)[J]. Acta Ecologica Sinica, 26(08): 2749-2756.) 10 毛东东, 张凯, 欧红霞, 等. 2018a. 2种饲料投喂下草鱼肌肉品质的比较分析[J]. 动物营养学报, (06): 2226-2234. (Mao D D, Zhang K, Ou H X, et al. 2018. Comparative analysis of muscle quality of grass carp fed with two feeds[J]. Chinese Journal of Animal Nutrition, (06): 2226-2234.) 11 毛东东, 张凯, 欧红霞, 等. 2018b. 投喂皇竹草和配合饲料对草鱼生长及肌肉营养成分的影响[J]. 大连海洋大学学报, 33(01): 7-13. (Mao D D, Zhang K, Ou H X, et al.2018. Effects of feeding rhizome and compound feed on growth and muscle nutrient composition of grass carps[J]. Journal of Dalian Ocean University, 33(01): 7-13.) 12 毛盼, 胡毅, 郇志利, 等. 2014. 投喂蚕豆饲料和去皮蚕豆饲料对草鱼生长性能、肌肉品质及血液生理生化指标的影响[J]. 动物营养学报, 26(3): 803-811. (Mao P, Hu Y, Huan Z L, et al.2014. Effects of feeding broad bean feed and peeled broad bean feed on growth performance, muscle quality and blood physiological and biochemical indexes of grass carp[J]. Chinese Journal of Animal Nutrition, 26(3): 803-811.) 13 苏月华, 陈少威, 吴程, 等. 2018. 基于高通量测序技术研究白甲鱼肠道微生物群落组成[J]. 福建师范大学学报(自然科学版), (06): 63-71. (Su Y H, Chen S W, Wu C, et al.2018. Study on intestinal microbial community composition of white turtle based on high-throughput sequencing technology[J]. Journal of Fujian Normal University (natural science edition), (06): 63-71.) 14 王向向, 丁长河, 韩小存, 等. 2012. 几种豆类的碳水化合物消化特性研究[J]. 河南工业大学学报(自然科学版), 33(2): 47-51. (Wang X X, Ding C H, Han X C, et al.2012. Carbohydrate digestion characteristics of several kinds of beans[J]. Journal of Henan University of Technology (natural science edition), 33(2): 47-51.) 15 王一飞, 吉红, 陈昊杰, 等. 2015.投喂蚕豆对草鱼肌肉质构特性、脂质蓄积状况及组织脂肪酸组成的影响[J]. 南方农业学报, 46(11): 2040-2045. (Wang Y F, Ji H, Chen H J, et al.2015. Effects of feeding fava bean on muscle texture, lipid accumulation and tissue fatty acid composition of grass carp[J]. Journal of Southern Agriculture, 46(11): 2040-2045.) 16 油九菊, 柳敏海, 殷小龙, 等. 2018. 基于高通量测序的东海带鱼肠道菌群结构分析[J]. 渔业研究, 40(06): 434-440. (You J J, Liu M H, Yin X L, et al.2018. Intestinal microflora structure analysis of donghai hairtail fish based on high-throughput sequencing[J]. Fisheries Research, 40(06): 434-440.) 17 于凌云, 白俊杰, 刘邦辉, 等. 2013. 皇竹草和人工配合饲料营养成分分析及其对2月龄草鱼的增重效果[J]. 安徽农业科学, 41(28): 11388-11389. (Yu L Y, Bai J J, Liu B H, et al.2013. Nutritional composition analysis of king bamboo grass and artificial compound feed and its weight gain effect on 2-month-old grass carp[J]. Anhui Agricultural Science, 41(28): 11388-11389.) 18 郑小淼, 李小勤, 魏静, 等. 2016. 蚕豆及其提取物对草鱼生长、肌肉成分和血清生化指标的影响[J]. 水生生物学报, 40(01): 173-180. (Zheng X M, Li X Q, Wei J, et al.2016. Effects of vicia faba and its extracts on growth, muscle composition and serum biochemical indexes of grass carp[J]. Chinese Journal of Aquatic Biology, 40(01): 173-180.) 19 Cai X J, Wang L, Wang X L, et al.2017. Effect of high dietary fiber low glycemic index diet on intestinal flora, blood glucose and inflammatory response in T2DM patients[J]. Biomedical Research. 28(21): 9371-9375. 20 Dawood M A, Koshio S, Ishikawa M, et al.2016. Effects of dietary supplementation of Lactobacillus rhamnosus or/and Lactococcus lactis on the growth, gut microbiota and immune responses of red sea bream, Pagrus major[J]. Fish and Shellfish Immunology, 49: 275-285. 21 Francis G, Makkar H P S, Becker K.2001. Antinutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish[J]. Aquaculture, 199(3): 197-227. 22 Ganguly S.2012. Microflora in fish digestive tract plays significant role in digestion and metabolism[J]. Reviews in Fish Biology & Fisheries, 22(1): 11-16. 23 Horspool A M, Chang H C.2018. Neuron-specific regulation of superoxide dismutase amid pathogen-induced gut dysbiosis[J]. Redox Biology, 17: 377-385. 24 Ingerslev H C, Jørgensen L V G, Strube M L, et al.2014. The development of the gut microbiota in rainbow trout (Oncorhynchus mykiss) is affected by first feeding and diet type[J]. Aquaculture, 424-425(2): 24-34. 25 Ley R E, Turnbaugh P J, Samuel K, et al.2006. Microbial ecology: Human gut microbes associated with obesity[J]. Nature, 444(7122): 1022-1023. 26 Li Z, Yu E, Wang G, et al.2018. Broad bean (Vicia faba L.) Induces intestinal inflammation in grass carp (Ctenopharyngodon idellus C. et V) by increasing relative abundances of intestinal gram-negative and flagellated bacteria[J]. Frontiers in Microbiology, 9: 1913-1915. 27 Lindström M, Heikinheimo A, Lahti P, et al.2011. Novel insights into the epidemiology of Clostridium perfringens type a food poisoning[J]. Food Microbiology, 28(2): 192-198. 28 Lópezhernández K M, Pardíosedas V, Lizárragapartida L, et al.2015. Seasonal abundance of Vibrio cholerae non O1/non O139 chxA+ in oysters harvested in a coastal lagoon of Mexico's Gulf coast: A seafood safety risk concern[J]. Food Control, 53: 46-54. 29 Lu Q L, Tang L R, Wang S, et al.2014. An investigation on the characteristics of cellulose nanocrystals from Pennisetum sinese[J]. Biomass & Bioenergy, 70: 267-272. 30 Mal A K, Bar-Cohen Y.2006. Chemical treatments to reduce antinutritional factors in salseed (Shorea robusta) meal: Effect on nutrient digestibility in colostomized hens and intact broilers[J]. Poultry Science, 85(12): 2207-2215. 31 Mccord J M, Fridovich I.1969. Superoxide dismutase[J]. Journal of Biological Chemistry, 244(22): 6049-6055. 32 Song X, Marandel L, Dupontnivet M, et al.2018. Hepatic glucose metabolic responses to digestible dietary carbohydrates in two isogenic lines of rainbow trout[J]. Biology Open, 7(6): 32896. 33 Sullam K E, Essinger S D, Lozupone C A, et al.2012. Environmental and ecological factors that shape the gut bacterial communities of fish: A meta-analysis[J]. Molecular Ecology, 21(13): 3363-3378. 34 Sun X, Xiao J, Huang G.2019. Recovery of lysozyme from aqueous solution by polyelectrolyte precipitation with sodium alginate[J]. Food Hydrocolloids, 90: 225-231 35 Tim B, Janssen A E M, Boom R M.2010. A kinetic model to explain the maximum in alpha-amylase activity measurements in the presence of small carbohydrates[J]. Biotechnology & Bioengineering, 94(3): 431-440. 36 Tran-Duy A.2008. Modeling the effects of dietary carbohydrate and ambient oxygen concentration on feed intake and growth in fish[D]. Thesis for Ph.D., Wageningen University, The Netherlands, Suppervisor: Marcel Machiels, pp. 77-79. 37 Yu E, Li X, Xie J, et al.2018. A new culture method of high ecological efficiency of grass carp (Ctenopharyngodon idellus)[J]. Nature Environment and Pollution Technology, 17(1): 299-305. 38 Zhou J, He Z, Yang Y, et al.2015. High-throughput metagenomic technologies for complex microbial community analysis: open and closed formats[J]. mBio, 6(1): e02288-14. |
|
|
|