Research Progress on the Regulation of Lipid Droplet Metabolism by Mitochondria
WANG Run-Yu1, YANG Lin-Xin1, ZHANG Rui-Qiang1, WANG Er-Dan1, YANG Cai-Mei2, YANG Ting1,3,*
1 College of Animal Science and Technology•College of Veterinary Medicine/Zhejiang Key Laboratory of Applied Technology Research on Green-Ecological & Healthy Breeding of Livestock and Poultry/Zhejiang Engineering Laboratory of Animal Health Internet Detection Technology, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China; 2 Zhejiang Vegamax Biotechnology Co., Ltd., Huzhou 313300, China; 3 Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
Abstract:Mitochondria play a pivotal role in the energy metabolism of eukaryotic cells and are closely associated with lipid metabolism in adipose tissue. Lipid droplets maintain intimate connections with mitochondria and could form unique structural architectures; multiple proteins localized at the lipid droplet-mitochondria membrane contact sites are involved in regulating the biogenesis and expansion of lipid droplets. Mitophagy is categorized into 2 subtypes, namely ubiquitin-dependent mitophagy and ubiquitin-independent mitophagy, which could selectively eliminate damaged mitochondria to preserve cellular homeostasis. In adipocytes, mitophagy modulates mitochondrial quantity and adipocyte-specific properties, exerting profound impacts on lipid metabolism and systemic health. Although mitochondria and lipid droplets are of great significance in regulating lipid metabolism, preventing lipotoxicity, and maintaining lipid homeostasis, the current understanding of their interplay remains limited. This paper aims to broaden the insights into the mechanisms underlying the regulation of lipid metabolism by mitochondria-lipid droplet interactions, thereby providing theoretical foundations and research frameworks for elucidating the pathological mechanisms of metabolic diseases and developing targeted therapeutic strategies.
王润羽, 杨林鑫, 张瑞强, 王二旦, 杨彩梅, 杨亭. 线粒体调控脂滴代谢的研究进展[J]. 农业生物技术学报, 2026, 34(1): 186-198.
WANG Run-Yu, YANG Lin-Xin, ZHANG Rui-Qiang, WANG Er-Dan, YANG Cai-Mei, YANG Ting. Research Progress on the Regulation of Lipid Droplet Metabolism by Mitochondria. 农业生物技术学报, 2026, 34(1): 186-198.
[1] 姜诚诚, 李洋洋, 段可欣, 等. 2024. Parkin通过介导PINK1/Parkin线粒体自噬信号通路加速小鼠帕金森病发展及加剧神经炎症发生[J].南方医科大学学报, 44(12): 2359-2366. (Jiang C, Li Y, Duan K, et al.2024. Parkin deletion affects PINK1/Parkin-mediated mitochondrial autophagy to exacerbate neuroinflammation and accelerate progression of Parkinson's disease in mice[J]. Nan Fang Yi Ke Da Xue Xue Bao (Journal of Southern Medical University). 44(12): 2359-2366.) [2] Aldiss P, Betts J, Sale C, et al.2018. Exercise-induced 'browning' of adipose tissues[J]. Metabolism: Clinical and Experimental, 81: 63-70. [3] Altshuler-Keylin S, Kajimura S.2017. Mitochondrial homeostasis in adipose tissue remodeling[J]. Science Signaling, 10(468): eaai9248. [4] Asimakopoulou A, Engel K M, Gassler N, et al.2020. Deletion of Perilipin 5 protects against hepatic injury in nonalcoholic fatty liver disease via missing inflammasome activation[J]. Cells, 9(6): 1346. [5] Benador I Y, Veliova M, Mahdaviani K, et al.2018. Mitochondria bound to lipid droplets have unique bioenergetics, composition, and dynamics that support lipid droplet expansion[J]. Cell Metabolism, 27(4): 869-885. e866. [6] Bertholet A M, Kazak L, Chouchani E T, et al.2017. Mitochondrial patch clamp of beige adipocytes reveals UCP1-positive and UCP1-negative cells both exhibiting futile creatine cycling[J]. Cell Metabolism, 25(4): 811-822. e814. [7] Blaszkiewicz M, Willows J W, Johnson C P, et al.2019. The importance of peripheral nerves in adipose tissue for the regulation of energy balance[J]. Biology, 8(1): 10. [8] Boutant M, Kulkarni S S, Joffraud M, et al.2017. Mfn2 is critical for brown adipose tissue thermogenic function[J]. The EMBO Journal, 36(11): 1543-1558. [9] Cairó M, Campderrós L, Gavaldà‐Navarro A, et al.2019. Parkin controls brown adipose tissue plasticity in response to adaptive thermogenesis[J]. EMBO Reports, 20(5): e46832. [10] Carobbio S, Pellegrinelli V, Vidal-Puig A.2017. Adipose Tissue Function and Expandability as Determinants of Lipotoxicity and the Metabolic Syndrome[M]//Obesity and Lipotoxicity]. Cham, Springer, pp. 161-196. [11] Chen R, Chen J.2024. Mitochondrial transfer-a novel promising approach for the treatment of metabolic diseases[J]. Frontiers in Endocrinology, 14: 1346441. [12] Chitraju C, Mejhert N, Haas J T, et al.2017. Triglyceride synthesis by DGAT1 protects adipocytes from lipid-induced ER stress during lipolysis[J]. Cell Metabolism, 26(2): 407-418. e403. [13] Choi J W, Jo A, Kim M, et al.2016. BNIP3 is essential for mitochondrial bioenergetics during adipocyte remodelling in mice[J]. Diabetologia, 59(3): 571-581. [14] Clemente-Postigo M, Tinahones A, El Bekay R, et al.2020. The role of autophagy in white adipose tissue function: Implications for metabolic health[J]. Metabolites, 10(5): 179. [15] Cui X, Wang J, Zhang Y, et al.2022. Plin5, a new target in diabetic cardiomyopathy[J]. Oxidative Medicine and Cellular Longevity, 2022: 2122856. [16] Freyre C A C, Rauher P C, Ejsing C S, et al.2019. MIGA2 links mitochondria, the ER, and lipid droplets and promotes de novo lipogenesis in adipocytes[J]. Molecular Cell, 76(5): 811-825.e814. [17] Fu T, Xu Z, Liu L, et al.2018. Mitophagy directs muscle-adipose crosstalk to alleviate dietary obesity[J]. Cell Reports, 23(5): 1357-1372. [18] Gallardo-Montejano V I, Yang C, Hahner L, et al.2021. Perilipin 5 links mitochondrial uncoupled respiration in brown fat to healthy white fat remodeling and systemic glucose tolerance[J]. Nature Communications, 12(1): 3320. [19] Grabner G F, Xie H, Schweiger M, et al.2021. Lipolysis: Cellular mechanisms for lipid mobilization from fat stores[J]. Nature Metabolism, 3(11): 1445-1465. [20] Granneman J G, Moore H P, Mottillo E P, et al.2011. Interactions of perilipin-5 (Plin5) with adipose triglyceride lipase[J]. Journal of Biological Chemistry, 286(7): 5126-5135. [21] Hashani M, Witzel H R, Pawella L M, et al.2018. Widespread expression of perilipin 5 in normal human tissues and in diseases is restricted to distinct lipid droplet subpopulations[J]. Cell and Tissue Research, 374(1): 121-136. [22] Herms A, Bosch M, Reddy B J, et al.2015. AMPK activation promotes lipid droplet dispersion on detyrosinated microtubules to increase mitochondrial fatty acid oxidation[J]. Nature Communications, 6(1): 7176. [23] Hernández-Alvarez M I, Sebastián D, Vives S, et al.2019. Deficient endoplasmic reticulum-mitochondrial phosphatidylserine transfer causes liver disease[J]. Cell, 177(4): 881-895.e817. [24] Hernandez J D, Li T, Ghannam H, et al.2024. Linking adipose tissue eosinophils, IL-4, and leptin in human obesity and insulin resistance[J]. JCI Insight, 9(3): e170772. [25] Irshad Z, Dimitri F, Christian M, et al.2017. Diacylglycerol acyltransferase 2 links glucose utilization to fatty acid oxidation in the brown adipocytes[J]. Journal of Lipid Research, 58(1): 15-30. [26] Ji X, Zhang X, Zhang T, et al.2025. PNPLA7 mediates Parkin-mitochondrial recruitment in adipose tissue for mitophagy and inhibits browning[J]. Nature Communications, 16(1): 6651. [27] Jin H, Zhu Y, Li Y, et al.2019. BDNF-mediated mitophagy alleviates high-glucose-induced brain microvascular endothelial cell injury[J]. Apoptosis, 24(5-6): 511-528. [28] Keenan S N, De Nardo W, Lou J, et al.2021. Perilipin 5 S155 phosphorylation by PKA is required for the control of hepatic lipid metabolism and glycemic control[J]. Journal of Lipid Research, 62: 100016. [29] Li J, Li H, Niu N, et al.2025. NRF-1 promotes FUNDC1-mediated mitophagy as a protective mechanism against hypoxia-induced injury in cardiomyocytes[J]. Experimental Cell Research, 446(1): 114472. [30] Li J, Lin Q, Shao X, et al.2023. HIF1α-BNIP3-mediated mitophagy protects against renal fibrosis by decreasing ROS and inhibiting activation of the NLRP3 inflammasome[J]. Cell Death and Disease, 14(3): 200. [31] Li J, Yang D, Li Z, et al.2023. PINK1/Parkin-mediated mitophagy in neurodegenerative diseases[J]. Ageing Research Reviews, 84: 101817. [32] Li Q, Wang O, Ji B, et al.2023. Alcohol, white adipose tissue, and brown adipose tissue: Mechanistic links to lipogenesis and lipolysis[J]. Nutrients, 15(13): 2953. [33] Li Y, Zheng W, Lu Y, et al.2021. BNIP3L/NIX-mediated mitophagy: Molecular mechanisms and implications for human disease[J]. Cell Death and Disease, 13(1): 14. [34] Lin J, Chen K, Chen W, et al.2020. Paradoxical mitophagy regulation by PINK1 and TUFm[J]. Molecular Cell, 80(4): 607-620.e612. [35] Liu L, Feng D, Chen G, et al.2012. Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells[J]. Nature Cell Biology, 14(2): 177-185. [36] Liu L, Li Y, Wang J, et al.2021. Mitophagy receptor FUNDC1 is regulated by PGC‐1α/NRF1 to fine tune mitochondrial homeostasis[J]. EMBO Reports, 22(3): e50629. [37] Liu R, Xu C, Zhang W, et al.2022. FUNDC1-mediated mitophagy and HIF1α activation drives pulmonary hypertension during hypoxia[J]. Cell Death and Disease, 13(7): 634. [38] Lopez-Yus M, Hörndler C, Borlan S, et al.2024. Unraveling adipose tissue dysfunction: Molecular mechanisms, novel biomarkers, and therapeutic targets for liver fat deposition[J]. Cells, 13(5): 380. [39] Lu X.2019. Maintaining mitochondria in beige adipose tissue[J]. Adipocyte, 8(1): 77-82. [40] Lu X, Altshuler-Keylin S, Wang Q, et al.2018. Mitophagy controls beige adipocyte maintenance through a Parkin-dependent and UCP1-independent mechanism[J]. Science Signaling, 11(527): eaap8526. [41] Lu Y, Li Z, Zhang S, et al.2023. Cellular mitophagy: Mechanism, roles in diseases and small molecule pharmacological regulation[J]. Theranostics, 13(2): 736-766. [42] Marinković M, Novak I.2021. A brief overview of BNIP3L/NIX receptor-mediated mitophagy[J]. FEBS Open Bio, 11(12): 3230-3236. [43] Mason R R, Watt M J.2015. Unraveling the roles of PLIN5: Linking cell biology to physiology[J]. Trends in Endocrinology and Metabolism, 26(3): 144-152. [44] Mass-Sanchez P B, Krizanac M, Štancl P, et al.2024. Perilipin 5 deletion protects against nonalcoholic fatty liver disease and hepatocellular carcinoma by modulating lipid metabolism and inflammatory responses[J]. Cell Death Discovery, 10(1): 94. [45] Miner G E, So C M, Edwards W, et al.2023. PLIN5 interacts with FATP4 at membrane contact sites to promote lipid droplet-to-mitochondria fatty acid transport[J]. Developmental Cell, 58(14): 1250-1265.e1256. [46] Mu W J, Zhu J Y, Chen M, et al.2021. Exercise-mediated browning of white adipose tissue: its significance, mechanism and effectiveness[J]. International Journal of Molecular Sciences, 22(21): 11512. [47] Najt C P, Adhikari S, Heden T D, et al.2023. Organelle interactions compartmentalize hepatic fatty acid trafficking and metabolism[J]. Cell Reports, 42(5): 112435. [48] Najt C P, Khan S A, Heden T D, et al.2020. Lipid droplet-derived monounsaturated fatty acids traffic via PLIN5 to allosterically activate SIRT1[J]. Molecular Cell, 77(4): 810-824.e818. [49] Nakajima S, Nishimoto Y, Tateya S, et al.2019. Fat-specific protein 27α inhibits autophagy-dependent lipid droplet breakdown in white adipocytes[J]. Journal of Diabetes Investigation, 10(6): 1419-1429. [50] Narendra D P, Youle R J.2024. The role of PINK1-Parkin in mitochondrial quality control[J]. Nature Cell Biology. 26(10): 1639-1651. [51] Olzmann J A, Carvalho P.2019. Dynamics and functions of lipid droplets[J]. Nature Reviews Molecular Cell Biology, 20(3): 137-155. [52] Onishi M, Yamano K, Sato M, et al.2021. Molecular mechanisms and physiological functions of mitophagy[J]. The EMBO Journal, 40(3): e104705. [53] Ouyang Q, Chen Q, Ke S, et al.2023. Rab8a as a mitochondrial receptor for lipid droplets in skeletal muscle[J]. Developmental Cell, 58(4): 289-305.e286. [54] Pilkington A-C, Paz H A, Wankhade U D.2021. Beige adipose tissue identification and marker specificity—overview[J]. Frontiers in Endocrinology, 12: 599134. [55] Protasoni M, Zeviani M.2021. Mitochondrial structure and bioenergetics in normal and disease conditions[J]. International Journal of Molecular Sciences, 22(2): 586. [56] Qian S, Tang Y, Tang Q-Q.2021. Adipose tissue plasticity and the pleiotropic roles of BMP signaling[J]. Journal of Biological Chemistry, 296: 100678. [57] Rahman M S, Kim Y S.2020. PINK1-PRKN mitophagy suppression by mangiferin promotes a brown-fat-phenotype via PKA-p38 MAPK signalling in murine C3H10T1/2 mesenchymal stem cells[J]. Metabolism: Clinical and Experimental, 107: 154228. [58] Selvaraj R, Zehnder S V, Watts R, et al.2023. Preferential lipolysis of DGAT1 over DGAT2 generated triacylglycerol in Huh7 hepatocytes[J]. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1868(10): 159376. [59] Shang W, Li Y, Wang L, et al.2025. Deletion of EP3 prostaglandin receptor in murine macrophages aggravates diet-induced obesity by suppressing SPARC[J]. The EMBO Journal, 44(18): 4962-4983. [60] Sharma A K, Khandelwal R, Wolfrum C.2024. Futile lipid cycling: From biochemistry to physiology[J]. Nature Metabolism, 6(5): 808-824. [61] Siggins R W, McTernan P M, Simon L, et al.2023. Mitochondrial dysfunction: At the nexus between alcohol-associated immunometabolic dysregulation and tissue injury[J]. International Journal of Molecular Sciences, 24(10): 8650. [62] Takeda Y, Harada Y, Yoshikawa T, et al.2023. Mitochondrial energy metabolism in the regulation of thermogenic brown fats and human metabolic diseases[J]. International Journal of Molecular Sciences, 24(2): 1352. [63] Talari N K, Mattam U, Meher N K, et al.2023. Lipid-droplet associated mitochondria promote fatty-acid oxidation through a distinct bioenergetic pattern in male Wistar rats[J]. Nature Communications, 14(1): 766. [64] Tan Y, Jin Y, Wang Q, et al.2019. Perilipin 5 protects against cellular oxidative stress by enhancing mitochondrial function in HepG2 cells[J]. Cells, 8(10): 1241. [65] Tao X, Du R, Guo S, et al.2022. PGE(2)-EP3 axis promotes brown adipose tissue formation through stabilization of WTAP RNA methyltransferase[J]. EMBO Journal, 41(16): e110439. [66] Taylor D, Gottlieb R A.2017. Parkin-mediated mitophagy is downregulated in browning of white adipose tissue[J]. Obesity (Silver Spring), 25(4): 704-712. [67] Tol M J, Ottenhoff R, van Eijk M, et al.2016. A PPARγ-Bnip3 axis couples adipose mitochondrial fusion-fission balance to systemic insulin sensitivity[J]. Diabetes, 65(9): 2591-2605. [68] Veitch S, Njock M S, Chandy M, et al.2022. MiR-30 promotes fatty acid beta-oxidation and endothelial cell dysfunction and is a circulating biomarker of coronary microvascular dysfunction in pre-clinical models of diabetes[J]. Cardiovascular Diabetology, 21(1): 31. [69] Veliova M, Petcherski A, Liesa M, et al.2020. The biology of lipid droplet-bound mitochondria[J]. Seminars in Cell & Developmental Biology, 108: 55-64. [70] Vergnes L, Lin J Y, Davies G R, et al.2020. Induction of UCP1 and thermogenesis by a small molecule via AKAP1/PKA modulation[J]. Journal of Biological Chemistry, 295(44): 15054-15069. [71] Vernochet C, Damilano F, Mourier A, et al.2014. Adipose tissue mitochondrial dysfunction triggers a lipodystrophic syndrome with insulin resistance, hepatosteatosis, and cardiovascular complications[J]. The FASEB Journal, 28(10): 4408. [72] Wang C, Zhao Y, Gao X, et al.2015. Perilipin 5 improves hepatic lipotoxicity by inhibiting lipolysis[J]. Hepatology, 61(3): 870-882. [73] Wang S, Zhang B, Mauck J, et al.2024. Diacylglycerol O-acyltransferase isoforms play a role in peridroplet mitochondrial fatty acid metabolism in bovine liver[J]. Journal of Dairy Science, 107(11): 9897-9914. [74] Wu H, Wang Y, Li W, et al.2019. Deficiency of mitophagy receptor FUNDC1 impairs mitochondrial quality and aggravates dietary-induced obesity and metabolic syndrome[J]. Autophagy, 15(11): 1882-1898. [75] Wu Y, Jiang T, Hua J, et al.2022. PINK1/Parkin-mediated mitophagy in cardiovascular disease: From pathogenesis to novel therapy[J]. International Journal of Cardiology, 361: 61-69. [76] Xu L, Li L, Wu L, et al.2024. CIDE proteins and their regulatory mechanisms in lipid droplet fusion and growth[J]. FEBS Letters, 598(10): 1154-1169. [77] Yamashita S I, Sugiura Y, Matsuoka Y, et al.2024. Mitophagy mediated by BNIP3 and NIX protects against ferroptosis by downregulating mitochondrial reactive oxygen species[J]. Cell Death and Differentiation, 31(5): 651-661. [78] Yan C, Gong L, Chen L, et al.2020. PHB2 (prohibitin 2) promotes PINK1-PRKN/Parkin-dependent mitophagy by the PARL-PGAM5-PINK1 axis[J]. Autophagy, 16(3): 419-434. [79] Yan X Y, Luo Y Y, Chen H J, et al.2024. IRX3 promotes adipose tissue browning and inhibits fibrosis in obesity-resistant mice[J]. International Journal Of Biochemistry & Cell Biology, 175: 106638. [80] Yan Y, Ran X, Zhou Z, et al.2024. FGF21 inhibits ferroptosis caused by mitochondrial damage to promote the repair of peripheral nerve injury[J]. Frontiers in Pharmacology, 15: 1358646. [81] Yao J, Wu D, Zhang C, et al.2021. Macrophage IRX3 promotes diet-induced obesity and metabolic inflammation[J]. Nature Immunology, 22(10): 1268-1279. [82] Yin Y, Shen H.2021. Advances in cardiotoxicity induced by altered mitochondrial dynamics and mitophagy[J]. Frontiers in Cardiovascular Medicine, 8: 739095. [83] Ždralević M, Giannattasio S.2022. Mitochondrial research: Yeast and human cells as models[J]. International Journal of Molecular Sciences, 23(12): 6654. [84] Zhang P, He Y, Wu S, et al.2022. Factors associated with white fat browning: New regulators of lipid metabolism[J]. International Journal of Molecular Sciences, 23(14): 7641. [85] Zhang X, Xu W, Xu R, et al.2022. Plin5 bidirectionally regulates lipid metabolism in oxidative tissues[J]. Oxidative Medicine and Cellular Longevity, 2022(1): 4594956. [86] Zhou L, Yu M, Arshad M, et al.2018. Coordination among lipid droplets, peroxisomes, and mitochondria regulates energy expenditure through the CIDE-ATGL-PPARα pathway in adipocytes[J]. Diabetes, 67(10): 1935-1948. [87] Zhu Q, An Y A, Scherer P E.2022. Mitochondrial regulation and white adipose tissue homeostasis[J]. Trends in Cell Biology, 32(4): 351-364.