Population Genetic Structure and Pathogenicity Analysis of Cochlibolus heterostrophus from Sweet Corn (Zea mays) in Fujian Province
DAI Yu-Li1, GAN Lin1, LIAO Lei1, TENG Zhen-Yong2, LU Xue-Song1, YANG Xiu-Juan1,*
1 Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; 2 Fujian Seed Station, Fuzhou 350001, China
Abstract:Southern corn leaf blight (SCLB) caused by Cochlibolus heterostrophus is an important foliar fungal disease that significantly affects corn (Zea mays) yield and quality. To determine the population genetic structure and pathogenicity of C. heterostrophus populations from sweet corn in different geographical locations, inter-simple sequence repeat (ISSR) molecular markers and pathogenicity assays were used for analysis the population genetic structure and pathogenicity of 7 C. heterostrophus populations (Nanping, Ningde, Fuzhou, Sanming, Putian, Longyan, Zhangzhou) from sweet corn in Fujian province. A total of 198 loci were detected using optimized 13 ISSR primers, and the percentage of polymorphic DNA loci (PL) were 100.0%, with the highest level of DNA polymorphism being detected from Fuzhou population (PL=73.7%) and the lowest level of DNA polymorphism being detected from those in Longyan (LY) and Zhangzhou (ZZ) populations (58.6% and 56.6%). ISSR marker results indicated that a total of 126 multilocus haplotypes were detected among C. heterostrophus populations from the 7 geographical locations in Fujian province, with no shared multilocus haplotypes being detected from these populations. The most abundant multilocus haplotype diversity (HS) was detected from Nanping (NP) population (HS=0.323), whereas the lowest diversity was detected from those in LY (HS=0.157). A low genetic differentiation was detected between C. heterostrophus populations from NP and Ningde, Putian and Sanming, and LY and ZZ (ΦPT<0.088), with the frequent gene flow being detected between these populations (Nm>5). However, moderate to high genetic differentiation was detected among populations in the other geographical locations. One hundred and twenty-six multilocus haplotype isolates from sweet corn in Fujian province were divided into 8 genetic clusters at genetic similarity coefficient of 0.768, with different isolates originated from the same location clustering together. The analysis of molecular variance (AMOVA) of 7 C. heterostrophus populations indicated that approximately 81.9% and 18.1% of the total variation occurred within and among populations, respectively. This result revealed that the major source of genetic variation in Fujian C. heterostrophus population was derived from within populations. The principal coordinates (PCoA) and population structure analysis showed that Fujian C. heterostrophus population could be divided into 2 genetic groups. Pathogenicity assays indicated that the 7 regional populations of C. heterostrophus had higher pathogenicity to 4 resistant and susceptible sweet corn cultivars, with the average disease index ranging from 36.42 to 59.23. Analysis of variance showed highly significant differences in pathogenicity among isolate, location, and cultivar, respectively (P<0.001). Nevertheless, no significant differences in pathogenicity among isolate×cultivar (P=0.999) and location×cultivar (P=0.361) interactions were detected at the level of 99%. This study provides a theoretical reference for the further investigation of genetic variation of C. heterostrophus and the resistance breeding efforts.
代玉立, 甘林, 廖蕾, 滕振勇, 卢学松, 杨秀娟. 福建省甜玉米小斑病菌群体遗传结构和致病性分析[J]. 农业生物技术学报, 2021, 29(11): 2198-2211.
DAI Yu-Li, GAN Lin, LIAO Lei, TENG Zhen-Yong, LU Xue-Song, YANG Xiu-Juan. Population Genetic Structure and Pathogenicity Analysis of Cochlibolus heterostrophus from Sweet Corn (Zea mays) in Fujian Province. 农业生物技术学报, 2021, 29(11): 2198-2211.
[1] 常佳迎, 刘树森, 马红霞, 等. 2019. 黄淮海地区夏玉米弯孢叶斑病菌遗传多样性分析[J]. 中国农业科学, 52(5): 822-836. (Chang J Y, Liu S S, Ma H X, et al. 2019. Genetic diversity analysis of Curvularia lunata in summer maize in Huang-Huai-Hai region[J]. Scientia Agricultura Sinica, 52(5): 822-836.) [2] 常佳迎, 刘树森, 石洁, 等. 2020. 海南三亚和黄淮海地区玉米小斑病菌致病性及遗传多样性分析[J]. 中国农业科学, 53(6): 1154-1165. (Chang J Y, Liu S S, Shi J, et al. 2020. Pathogenicity and genetic diversity of Bipolaria maydis in Sanya, Hainan and Huang-Huai-Hai region[J]. Scientia Agricultura Sinica, 53(6): 1154-1165.) [3] 陈星, 高子厚. 2019. DNA分子标记技术的研究与应用[J]. 分子植物育种, 17(6): 1970-1977. (Chen X, Gao Z H. 2019. The study and application of DNA molecular marker technique[J]. Molecular Plant Breeding, 17(6): 1970-1977.) [4] 代玉立, 甘林, 阮宏椿, 等. 2017. 福建省鲜食玉米小型叶斑病的病原菌鉴定[J]. 福建农业学报, 32(12): 1341-1349. (Dai Y L, Gan L, Ruan H C, et al. 2017. Pathogen identification of small leaf spots on sweet corn plants in Fujian[J]. Fujian Journal of Agricultural Sciences, 32(12): 1341-1349.) [5] 代玉立, 甘林, 阮宏椿, 等. 2019. 福建省丙环唑不同敏感性玉米小斑病菌的遗传多样性和致病性[J]. 植物病理学报, 49(1): 64-74. (Dai Y L, Gan L, Ruan H C, et al. 2019. Genetic diversity and pathogenicity of different propiconazole-sensitive isolates of Bipolaris maydis in Fujian province[J]. Acta Phytopathologica Sinica, 49(1): 64-74.) [6] 代玉立, 甘林, 滕振勇, 等. 2018. 福建省玉米小斑病菌致病力的分化[J]. 西北农林科技大学学报(自然科学版), 36(4): 342-347. (Dai Y L, Gan L, Teng Z Y, et al. 2018. Pathogenicity differentiation of Cochliobolus heterostrophus in Fujian[J]. Journal of Northwest A&F University (Natural Sciences Edition), 36(4): 342-347.) [7] 冯为民. 2012. 黄淮海地区玉米小斑病菌变异研究[D]. 硕士学位论文, 河北大学, 导师: 马平, 孔令晓. pp. 18-26. (Feng W M. 2012. The study of differentiation of Bipolaris maydis in Huang-Huai-Hai region[D]. Thesis for M. S., Hebei University, Supervisor: Ma P, Kong L X. pp. 18-26.) [8] 甘林, 苏光秋, 代玉立, 等. 2020. 玉米品种对小斑病的抗性分析及品种间作的控病效果[J]. 玉米科学, 28(4): 172-177. (Gan L, Su G Q, Dai Y L, et al. 2020. Resistant analysis of corn varieties to southern corn leaf blight and effects of varieties intercropping on the prevention of the disease[J]. Journal of Maize Sciences, 28(4): 172-177.) [9] 谷守芹, 范永山, 李坡, 等. 2008. 玉米大斑病菌ISSR反应体系的优化和遗传多样性分析[J]. 植物保护学报, 35(5): 427-432. (Gu S Q, Fan Y S, Li P, et al. 2008. Optimization of ISSR reaction and genetic diversity analysis of Exserohilum turcicum[J]. Acta Phytophylacica Sinica, 35(5): 427-432.) [10] 郭世保, 黄丽丽, 康振生, 等. 2009. 小麦多品种混播控制条锈病的效果和机理研究[J]. 中国农业科学, 42(10): 3485-3492. (Guo S B, Huang L L, Kang Z S, et al. 2009. Efficacy and mechanism of control of wheat stripe rust by diversifying cultivars in mix-planting[J]. Scientia Agricultura Sinica, 42(10): 3485-3492.) [11] 郭云燕, 陈茂功, 孙素丽, 等. 2013. 中国玉米南方锈病病原菌遗传多样性[J]. 中国农业科学, 46(21): 4523-4533. (Guo Y Y, Chen M G, Sun S L, et al. 2013. Genetic diversity of Puccinia polysora Underw. in China[J]. Scientia Agricultura Sinica, 46(21): 4523-4533.) [12] 何婧, 郭庆元, 王晓鸣, 等. 2011. 利用ISSR技术分析禾谷镰孢菌群体遗传多样性的研究[J]. 玉米科学, 19(2): 129-134. (He J, Guo Q Y, Wang X M, et al. 2011. Study on genetic diversity of Fusarium graminearum populations causing maize stalk rot by ISSR analysis[J]. Journal of Maize Sciences, 19(2): 129-134.) [13] 何霞红, 杨静, 王云月, 等. 2003. 水稻品种多样性田间稻瘟病菌群体遗传结构分析[J]. 应用生态学报, 14(5): 733-736. (He X H, Yang J, Wang Y Y, et al. 2003. Annalysis of genetic structure of Magnaporthe grisea in the fields of different rice varieties[J]. Chinese Journal of Applied Ecology, 14(5): 733-736.) [14] 李玥仁, 商鸿生, 胡必德. 1993. 陕西省玉米小斑病菌致病性分化研究[J]. 植物保护学报, 20(1): 90, 96. (Li Y R, Shang H S, Hu B D. 1993. Pathogenic specialization of Bipolaris maydis in Shaanxi province[J]. Acta Phytophylacica Sinica, 20(1): 90, 96.) [15] 陆宁海, 吴利民, 郎剑锋, 等. 2015. 河南省玉米小斑病菌生理小种鉴定及致病力分化[J]. 湖北农业科学, 54(7): 1603-1606. (Lu N H, Wu L M, Lang J F, et al. 2015. Identification of physiological races and pathogenicity differentiation of Bipolaris maydis in Henan province[J]. Hubei Agricultural Sciences, 2015, 54(7): 1603-1606.) [16] 陆宁海, 吴利民, 郎剑锋, 等. 2016. 新乡地区玉米小斑病菌小种群体结构及致病性分析[J]. 河南科技学院学报(自然科学版), 44(1): 23-27. (Lu N H, Wu L M, Lang J F, et al. 2016. Analysis on population structure and pathogenic and pathogenicity differentiation of Bipolaris maydis in Xinxiang[J]. Journal of Henan Institute of Science and Technology (Natural Sciences Edition), 44(1): 23-27.) [17] 梅玉云. 2016. 安徽省玉米小斑病菌的生物学特性与群体遗传多样性研究[D]. 硕士学位论文, 安徽农业大学, 导师: 齐永霞. pp. 30-42. (Mei Y Y. 2016. Biological characteristics and population genetic diversities of Bipolaris maydis in Anhui province[D]. Thesis for M.S., Anhui Agricultural University, Supervisor: Qi Y X. pp. 30-42.) [18] 秦旭升, 刘学敏, 周艳玲, 等. 2000. 植物病原真菌中DNA分子鉴定技术[J]. 植物生理学通讯, 36(4): 342-347. (Qin X S, Liu X M, Zhou Y L, et al. 2000. DNA molecular marker technique of phytopathogenic fungi[J]. Plant Physiology Communications, 36(4): 342-347.) [19] 唐启义. 2010. DPS数据处理系统: 实验设计、统计分析及数据挖掘(第二版)[M]. 科学出版社, 北京. pp. 130-150. (Tang Q Y. 2010. DPS Data Processing System: Experimental Design, Statistical Analysis and Data Mining (2nd Ed)[M]. Science Press, Beijing. pp. 130-150.) [20] 王建锋, 陆宁海, 陈长卿, 等. 2013. 陕西省小麦条锈菌群体遗传结构分析[J]. 植物病理学报, 43(3): 294-300. (Wang J F, Lu N H, Chen C Q, et al. 2013. Analysis of population genetic structure of Puccinia striiformis f. sp. tritici in Shaanxi Province, China[J]. Acta Phytopathologica Sinica, 43(3): 294-300.) [21] 张小飞, 高增贵, 庄敬华, 等. 2010. 利用UP-PCR、ISSR和AFLP标记分析玉米丝黑穗病菌遗传多样性[J]. 植物保护学报, 37(3): 241-248. (Zhang X F, Gao Z G, Zhuang J H, et al. 2010. Genetic diversity of Sporisorium reilianum by UP-PCR, ISSR and AFLP analysis[J]. Acta Phytophylacica Sinica, 37(3): 241-248.) [22] 张小飞, 李晓, 崔丽娜, 等. 2015a. 我国玉米灰斑病菌遗传多样性的ISSR分析[J]. 植物保护学报, 42(6): 908-913. (Zhang X F, Li X, Cui L N, et al. 2015a. Genetic diversity analysis of Cercospora spp. by ISSR in China[J]. Journal of Plant Protection, 42(6): 908-913.) [23] 张小飞, 李晓, 崔丽娜, 等. 2015b. 玉米圆斑病菌(Bipolaris zeicola)遗传多样性ISSR分析[J]. 植物保护, 41(3): 30-34. (Zhang X F, Li X, Cui L N, et al. 2015b. Genetic diversity analysis of corn leaf spot caused by Bipolaris zeicola with ISSR markers[J]. Plant Protection, 41(3): 30-34.) [24] Balint-Kurti P J, Carson M L.2006. Analysis of quantitative trait loci for resistance to southern leaf blight in juvenile maize[J]. Phytopathology, 96(3): 221-225. [25] Balint-Kurti P J, Zwonitzer J C, Pè M E, et al.2008. Identification of quantitative trait loci for resistance to southern leaf blight and days to anthesis in two maize recombinant inbred line populations[J]. Phytopathology, 98(3): 315-320. [26] Dai Y L, Gan L, Lan C Z, et al.2021. Genetic differentiation and mixed reproductive strategies in the northern corn leaf blight pathogen Setosphaeria turcica from sweet corn in Fujian province, China[J]. Frontiers in Microbiology, 12: 632575. [27] Dai Y L, Gan L, Ruan H C, et al.2018. Sensitivity of Cochliobolus heterostrophus to three demethylation inhibitor fungicides, propiconazole, diniconazole and prochloraz, and their efficacy against southern corn leaf blight in Fujian province, China[J]. European Journal of Plant Pathology, 152(2): 447-459. [28] Earl D A, Vonholdt B M.2012. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method[J]. Conservation Genetics Resources, 4(2): 359-361. [29] Evanno G, Regnaut S, Goudet J.2005. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study[J]. Molecular Ecology, 14(8): 2611-2620. [30] Grünwald N J, Goodwin S B, Milgroom M G, et al.2003. Analysis of genotypic diversity data for populations of microorganisms[J]. Phytopathology, 93(6): 738-746. [31] Kantety R V, Zeng X, Bennetzen J L, et al.1995. Assessment of genetic diversity in dent and popcorn (Zea mays L.) inbred lines using intersimple sequence repeat (ISSR) amplification[J]. Molecular Breeding, 1(4): 365-373. [32] Kolmer J A.1992. Diversity of virulence phenotypes and effect of host sampling between and within populations of Puccinia recondita f. sp. tritici in Canada[J]. Plant Disease, 76(6): 618-621. [33] Kump K L, Bradbury P J, Wisser R J, et al.2011. Genome-wide association study of quantitative resistance to southern leaf blight in the maize nested association mapping population[J]. Nature Genetics, 43(2): 163-168. [34] Li B, Kong L X, Qiu D W, et al.2021. Biocontrol potential and mode of action of entomopathogenic bacteria Xenorhabdus budapestensis C72 against Bipolaris maydis[J]. Biological Control, 158: 104605. [35] McDermott J M, McDonald B A.1993. Gene flow in plant pathosystems[J]. Annual Review of Phytopathology, 31: 353-373. [36] Milgroom M G.1996. Recombination and the multilocus structure of fungal populations[J]. Annual Review of Phytopathology, 34: 457-477. [37] Negeri A T, Coles N D, Holland J B, et al.2011. Mapping QTL controlling southern leaf blight resistance by joint analysis of three related recombinant inbred line populations[J]. Crop Science, 51(4): 1571-1579. [38] Nei M.1973. Analysis of gene diversity in subdivided populations[J]. Proceedings of the National Academy of Sciences of the USA, 70(12): 3321-3323. [39] Nieuwoudt A, Human M P, Craven M, et al.2018. Genetic differentiation in populations of Exserohilum turcicum from maize and sorghum in South Africa[J]. Plant Pathology, 67(8): 1483-1491. [40] Ordoñez M E, Kolmer J A.2009. Differentiation of molecular genotypes and virulence phenotypes of Puccinia triticina from common wheat in North America[J]. Phytopathology, 99(6): 750-758. [41] Peakall J K, Smouse P T.2012. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research-an update[J]. Bioinformatics, 28(19): 2537-2539. [42] Pritchard J K, Stephens M, Donnelly P.2000. Inference of population structure using multilocus genotype data[J]. Genetics, 155(2): 945-959. [43] Salimath S S, Oliveira A C, Godwin I D, et al.1995. Assessment of genome origins and genetic diversity in the genus Eleusine with DNA markers[J]. Genome, 38(4): 757-763. [44] Thomas A, Langston J D B, Stevenson K L.2012. Baseline sensitivity and cross-resistance to succinate-dehydrogenase-inhibiting and demethylation-inhibiting fungicides in Didymella bryoniae[J]. Plant Disease, 96(7): 979-984. [45] Wang F, Zhang S, Liu M G, et al.2014. Genetic diversity analysis reveals that geographical environment plays a more important role than rice cultivar in Villosiclava virens population selection[J]. Applied and Environmental Microbiology, 80(9): 2811-2820. [46] Wang M, Wang S, Ma J, et al.2017. Detection of?Cochliobolus heterostrophus?races in South China[J]. Journal of Phytopathology, 165(10): 681-691. [47] Wright S.1978. Evolution and the Genetics of Populations, vol 4: Variability Within and Among Natural Populations[M]. University of Chicago Press, Chicago. pp. 1-590. [48] Yeh F C, Yang R C, Boyle T B J, et al.1999. POPGENE Version 1.32, the User-friendly Software for Population Genetic Analysis[M]. University of Alberta, Edmonton. pp. 1-28. Available online: https://sites.ualberta.ca/~fyeh/. [49] Zhang Y, Zhang Y, Yu D D, et al.2020. Copper ions are required for Cochliobolus heterostrophus in appressorium formation and virulence on maize[J]. Phytopathology, 110(2): 494-504.