Isolation and Identification of a Aeromonas veronii Strain Causing the Hemorrhagic Disease of Great Blue-spotted Mudskipper (Boleophthalmus pectinirostris)
WANG Wei1,2, LI Chang-Hong1,2,*, ZHAN Ping-Ping2, CHEN Jiong1,2,*
1 State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Ningbo University, Ningbo 315211, China; 2 Laboratory of Biochemistry and Molecular Biology, School of Marine Science, Ningbo University, Ningbo 315832, China
Abstract:From August to September 2020, an outbreak of hemorrhagic disease in the great blue-spotted mudskipper (Boleophthalmus pectinirostris) occurred in a farm in Cixi City, Zhejiang Province, causing serious economic losses to farmers. In order to identify the pathogen of the disease, methods including the anatomical observation, bacterial isolation and culture, electron microscope observation, biochemical test, drug sensitivity test, artificial infection test, and phylogenetic analysis of the 16S rRNA and DNA gyrase subunit B gene (gyrB) were used for identification of the pathogen. The results showed that one dominant strain, named AV20211212, was isolated from the diseased fish. Observation by light microscope with gram staining and ultrastructural observation by scanning and transmission electron microscope showed that the isolated strain AV20211212 was Gram-negative with blunt round ends and hollow polar monotrichous flagella. Results from physiological and biochemical characteristics identification showed that AV20211212 had the similar physiological and biochemical characteristics to Aeromonas veronii. Homology analysis demonstrated that the 16S rRNA of the isolated strain shared 93.6%~99.4% homology with those of other A. veronii and the amino acid sequence of the gyrB from the isolated strain shared 99.5%~99.7% homology with those of other A. veronii. Phylogenetic analysis showed that the isolated strain was closely clustered with A. veronii. The isolated strain was highly resistant to 7 antibiotics such as penicillin and ampicillin, moderately sensitive to azithromycin, and sensitive to 12 antibiotics such as norfloxacin and amikacin. The mudskipper infected by the isolated strain AV20211212 showed the same symptoms with naturally diseased mudskipper on the farm, and its medium lethal dose (LD50) was 4.56×103 CFU/g to mudskipper. In the present study, A. veronii was identified as the pathogen of mudskipper for the first time. All the results provided theoretical basis and technical support for the effective prevention and rational medicine use for bacterial fish diseases in Cixi City.
王维, 李长红, 詹萍萍, 陈炯. 一株引起大弹涂鱼出血症的维氏气单胞菌的分离及鉴定[J]. 农业生物技术学报, 2022, 30(2): 344-355.
WANG Wei, LI Chang-Hong, ZHAN Ping-Ping, CHEN Jiong. Isolation and Identification of a Aeromonas veronii Strain Causing the Hemorrhagic Disease of Great Blue-spotted Mudskipper (Boleophthalmus pectinirostris). 农业生物技术学报, 2022, 30(2): 344-355.
[1] 东秀珠, 蔡妙英. 2001. 常见细菌系统鉴定手册[M]. 北京: 科学出版社, pp. 1-425. (Dong X Z, Cai. M Y.2001. Manual of system identification of common bacteria[M]. Beijing: Science Press, pp. 1-425.) [2] 高通, 张敏燕, 王均, 等. 2020. 花斑副沙鳅源致病性维氏气单胞菌的分离,鉴定及药物敏感性分析[J]. 中国预防兽医学报, 42(03): 239-244. (Gao T, Zhang M Y, Wang J, et al.2020. Isolation, identification and drug sensitivity analysis of pathogenic Aeromonas veronii from diseased Parabotia fasciata Dabry[J]. Chinese Journal of Preventive Veterinary Medicine, 042(03): 239-244.) [3] 郭婷婷, 孟繁星, 黎明, 等. 2020. 大弹涂鱼肝型GP基因的克隆及其在氨氮胁迫下的响应[J]. 农业生物技术学报, 28(03): 514-529. (Guo T T, Meng F X, Li M, et al.2020. Cloning of liver GP gene and its responses to ammonia nitrogen stress in great blue spotted mudskipper (Boleophthalmus pectinirostris)[J]. Journal of Agricultural Biotechnology, 28(03): 514-529.) [4] 贺扬, 华丽, 汪开毓, 等. 2016. 高致病性维氏气单胞菌胞外产物对斑点鲖的致病性[J]. 水产学报, 40(03): 457-467. (He Y, Hua L, Wang K Y, et al.2016. Investigation on the pathogenicity of extracellular products of a high virulence Aeromonas veronii strain isolated from Ictalurus punctatus[J]. Journal of Fisheries of China, 40(03): 457-467) [5] 胡骞, 胡瑞雪, 金玉立, 等. 2020. 克氏原螯虾源维氏气单胞菌的分离鉴定及组织病理学观察[J]. 水生生物学报, 44(4): 811-818. (Hu Q, Hu R X, Jin Y L, et al.2020. Isolation, identification and pathohistological observation of Aeromonas veronii from Procambarus clarkia[J]. Acta Hydrobiologica Sinica, 44(4): 811-818) [6] 李绍戊, 王荻, 曹永生, 等. 2018. 怀头鲇体表溃烂症病原鉴定及致病性分析[J]. 水产学报, 42(9): 1446-1453. (Li S W, Wang D, Cao Y S, et al.2018. Identification of the causative pathogen causing skin-ulcer in Silurus soldatovi and its pathogenicity[J]. Journal of Fisheries of China, 41(09): 1446-1453) [7] 李身铿. 1994. "水中人参"—温州阑胡[J]. 中国食品, 11: 43-43. (Li S J.1994. "Ginseng in water" - Wenzhou Langhu[J]. Chinese Food, 11: 43-43.) [8] 李忠琴, 张坤, 林茂, 等. 2017. 大黄鱼(Pseudosciaena crocea)致病性维氏气单胞菌的分离鉴定与药敏特性研究[J]. 海洋与湖沼, 48(01): 139-147. (Li Z Q, Zhang K, Lin M, et al.2017. Isolation and identification of pathogenic Aeromonas veronii from Pseudosciaena crocea[J]. Oceanologia et Limnologia Sinica, 48(01): 139-147) [9] 刘瑞棠. 2011. 大弹涂鱼养殖与病害防治技术[J]. 闽东农业科技, 01: 22-23. (Liu R T.2011 The breeding and disease prevention technology of the mudskipper[J]. Mindong Agricultural Science and Technology, 01: 22-23.) [10] 任燕, 高彩霞, 曾伟伟, 等. 2019. 两株草鱼源维氏气单胞菌菌株的主要表型特征及致病力比较[J]. 中国预防兽医学报, 41(02): 39-44. (Ren Y, Gao C X, Zeng W W, et al.2019. Pathogenicity and main phenotype characteristics of two Aeromonas veronii isolated from diseased grass carp[J]. Chinese Journal of Preventive Veterinary Medicine, 41(02): 39-44.) [11] 周慧华, 黄晓东, 安健, 等. 2019. 中华绒螯蟹致病性维氏气单胞菌的分离鉴定, 药敏特性及其组织病理学观察[J]. 南方农业学报, 050(008): 1851-1859. (Zhou H H, Huang X D, An J, et al.2019. Isolation,identification and antibiotic susceptibility of pathogenic Aeromonas veronii in Eriocheir sinensis and its histopathological observations[J]. Journal of Southern Agriculture, 050(08): 1851-1859.) [12] 朱成科, 刘桂嘉, 张争世, 等. 2017. 岩原鲤致病性维氏气单胞菌的分离与鉴定[J]. 中国人兽共患病学报, 33(06): 526-534. (Zhu C K, Liu G J, Zhang Z S, et al.2017. Identification of a pathogenic Aeromonas veronii isolated from rock carp, Procypris rabaudi[J]. Chinese Journal of Zoonoses, 33(06): 526-534.) [13] Acinas S G, Rodríguez-Valera Francisco, Carlos P A.1997. Spatial and temporal variation in marine bacterioplankton diversity as shown by RFLP fingerprinting of PCR amplified 16S rDNA[J]. FEMS Microbiology Ecology, 24: 27-40. [14] Aliu Y O, Nwude N.1982. Determination of the median lethal dose (LD50). Veterinary Pharmacology and Toxicology Experiments. Section 1[M]. Zaria: Ahmadu Bello University Press, pp104-110. [15] Baumann P, Schubert R H W.1984. Facultatively anaerobic gram-negative rods, Family Ⅱ. Vibrionaceae. Bergey's Manual of Systematic Bacteriology. Section 5[M]. Baltimore: Williams and Wilkins, pp. 516-550 . [16] De Silva B C J, Hossain S, Dahanayake P S, et al.2019. Aeromonas spp. from marketed Yesso scallop (Patinopecten yessoensis): Molecular characterization, phylogenetic analysis, virluence properties and antimicrobial susceptibility[J]. Journal of Applied Microbiology, 126(1): 288-299. [17] Evangelista-Barreto N S, Vieira R, Ca Rvalho F, et al.2006. Aeromonas spp. isolated from oysters (Crassostrea rhizophorea) from a natural oyster bed, Ceará, Brazil[J]. Revista do Instituto de Medicina Tropical de São Paulo, 48(3): 129-133. [18] Hickman-Brenner F W, Macdonald K L, Steigerwalt A G, et al.1987. Aermonas veronii, a new ornithine decarboxylase-positive species that may cause diarrhea[J]. Journal of Clinical Microbiology, 25(5): 900-906. [19] Hossain S, Dahanayake P S, De Silva B C J, et al.2019. Multi-drug resistant Aeromonas spp. isolated from zebrafish (Danio rerio): Antibiogram, antimicrobial resistance genes and class 1 integron gene cassettes[J]. Letters in Applied Microbiology, 68(5): 370-377. [20] Kumar S, Stecher G, Tamura K.2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Molecular Biology and Evolution, 33(7):1870-1874. [21] Latif-Eugenín F, Beaz-Hidalgo R, Silvera-Simón C, et al.2017. Chlorinated and ultraviolet radiation-treated reclaimed irrigation water is the source of Aeromonas found in vegetables used for human consumption[J]. Environmental Research, 154: 190-195. [22] Liu H H, Sun Q, Jiang Y T, et al.2019. In-depth proteomic analysis of Boleophthalmus pectinirostris skin mucus[J]. Journal of Proteomics, 200: 74-89. [23] Mallik S K, Joshi N, Shahi N, et al.2020. Characterization and pathogenicity of Aeromonas veronii associated with mortality in cage farmed grass carp, Ctenopharyngodon idella (Valenciennes, 1844) from the Central Himalayan region of India[J]. Antonie van Leeuwenhoek, 113: 2063-2076. [24] Pei C, Song H L, Zhu L, et al.2021. Identification of Aeromonas veronii isolated from largemouth bass Micropterus salmoides and histopathological analysis[J]. Aquaculture, 540: 736707. [25] Ramsamy Y, Mlisana K P, Amoako D G, et al.2020. Comparative pathogenomics of Aeromonas veronii from pigs in South Africa: Dominance of the novel ST657 clone[J]. Microorganisms, 8(12): 2008. [26] Song H C, Kang Y H, Zhang D X, et al.2018. Great effect of porin (aha) in bacterial adhesion and virulence regulation in Aeromonas veronii[J]. Microbial Pathogenesis, 126: 269-278. [27] Tekedar H C, Kumru S, Blom J, et al.2019. Comparative genomics of Aeromonas veronii: Identification of a pathotype impacting aquaculture globally[J]. PLOS ONE, 14(8): e0221018. [28] Yamamoto S, Harayama S.1995. PCR amplification and direct sequencing of gyrB genes with universal primers and their application to the detection and taxonomic analysis of Pseudomonas putida strains[J]. Applied and Environmental Microbiology, 61(3): 1104-1109. [29] You X, Bian C, Zan Q, et al.2014. Mudskipper genomes provide insights into the terrestrial adaptation of amphibious fishes[J]. Nature Communications, 5: 5594.