Abstract:Lycoris sprengeri is a kind of non-model perennial bulbous plant of Lycoris, whose flower color is bicolor with red and blue, and which is great ornamental value. It is of great significance to explore the mechanism of flower color formation by using genetic engineering technology for the breeding of new varieties of L. sprengeri. Virus-induced gene silencing (VIGS) is a new reverse genetics technology, which could be used to study the gene function of non-model plants. In this study, LsMYBs VIGS vectors were constructed by seamless cloning technology , the buds of L. sprengeri were infected using vacuum permeation method, and the expression of LsMYBs and anthocyanin contents of the petals in L. sprengeri after infection were detected, which would establish the VIGS technology system in L. sprengeri and analyzed the gene function of LsMYBs. The results showed that the expression of LsMYBs genes decreased significantly and the total contents of anthocyanin increased significantly after LsMYBs genes silencing. The relative expression of LsMYBs gene was relatively stable by 400 bp insertion fragment in VIGS vector, while the relative expression of LsMYBs was unstable after inserting a full length fragment of cDNA. The relative expression of structural genes ((chalcone synthase (LsCHS), chalcone isomerase (LsCHI), flavanone 3-hydroxylase (LsF3H), flavonoid 3'-hydroxylase (LsF3'H), dihydroflavonol-4-reductase (LsDFR), anthocyanidin synthaes (LsANS), flavonoid 3-o-glycosyltransferase (LsUFGT)) related to anthocyanin formation was affected after LsMYB4 gene silencing, the relative expression of all of the structural genes increased significantly during the whole anthocyanin biosynthesis process (early biosynthesis genes (EBGs) and late biosynthesis genes (LBGs)) and the degree of change was varying; while the expression of LBGs genes (LsANS, LsDFR3 and LsUFGT) increased significantly when LsMYB5 silencing, however, the expression of other genes did not change significantly. It could be inferred that LsMYB4 and LsMYB5 might play a negative regulatory role in the regulation of anthocyanin formation, while the target genes may be different. The results in this study provide a technical and theoretical basis for further analysis of the regulatory mechanism of LsMYBs transcription factors on the biosynthesis of anthocyanin in L. sprengeri.
[1] 陈俊, 王宗阳. 2002. 植物MYB类转录因子研究进展[J]. 植物生理与分子生物学学报, 28(02): 81-88. (Chen J, Wang Z Y.2002. Progress in the study of plant MYB transcription factors[J]. Journal of Plant Physiology and Molecular Biology, 28(2): 81-88.) [2] 丁榕, 梁晶, 赵和文, 等. 2018. VIGS实验技术体系在月季中的应用及优化[J]. 中国农学通报, 34(3): 87-92. (Ding R, Liang J, Zhao H W, et al., 2018. Application ang optimization of VIGS experimental technology system in rosa hybrida[J]. Agricultural Science Bulletin, 34(3): 87-92. ) [3] 高燕会, 黄春红, 朱玉球, 等. 2012. 植物花青素苷生物合成及调控的研究进展[J]. 中国生物工程杂志, (8): 94-99. (Gao Y H, Huang C H, Zhu Y Q, et al., 2012. Progress on plant anthocyanin biosynthesis and regulation[J]. China Biotechnology, 32(8): 94-99.) [4] 侯朔, 高燕会, 童再康, 2019.换锦花LsMYB5基因的克隆与表达分析[J]. 农业生物技术学报, 27(12): 2164~2174. (Hou S, Gao Y H, Tong Z K, 2019. Cloning and expression analysis of LsMYB5 gene in Lycoris sprengeri[J]. Journal of Agricultural Biotechnology, 27(12): 2164~2174. ) [5] 季娜娜, 闵德栋, 邵淑君, 等, 2016. VIGS载体在蔬菜作物中的应用研究进展[J]. 植物生理学报, 52(06): 810-816. (Ji N N, Min D D, Shao S J, et al., 2016. Advances in the application of VIGS vectors in vegetable crops[J]. Plant Physiology Journal, 52(06): 810-816.) [6] 蒋婷婷, 高燕会, 童再康. 2015. 石蒜属植物实时荧光定量PCR内参基因的选择[J]. 园艺学报,42(06): 1129-1138. (Jiang T T, Gao Y H, Tong Z K.2015. Selection of reference genes for quantitative real-time PCR in Lycoris[J]. Acta Horticulturae Sinica. 42(6):1129-1138.) [7] 李淼淼, 南富波, 刘伟, 等. 2013. VIGS技术在禾本科植物中的应用研究进展[J]. 麦类作物学报, 33(2):401-406. (Li M M, Nan F B, Liu Wet al., 2013. Progress of VIGS techonlogy in the studies of Gramineae plants[J]. Journal of triticeae Crops, 33(2): 401-406.) [8] 李志强, 曹延婷, 郭晓龙, 等. 2018. 基因功能研究工具VIGS在植物中的应用[J]. 基因组学与应用生物学, 37(2):915-923. (Li Zh Q, Cao Y T, Guo X L, et al., 2018. The application of research tool VIGS for gene function in plant[J]. Genomics and Applied Biology, 37(2): 915-923.) [9] 梁立军, 杨祎辰, 王二欢, 等. 2018. 植物花青素生物合成与调控研究进展[J]. 安徽农业科学, 46(21):18-24. (Liang L J, Yang Y C, Wang E H, et al., 2018. Research progress on biosynthesis and regulation of plant anthocyanin[J]. Journal of Anhui Agricultural Sciences, 46(21): 18-24.) [10] 刘军, 杨艳, 周晓慧, 等. 2018. 应用于茄子的病毒诱导的基因沉默体系的建立与优化[J].江苏农业学报, 34(4): 880-886. (Liu J, Yang Y, Zhou X H, et al., 2018. Establishment and optimization of virus-induced gene silencing in Eggplants[J]. Jiangsu Journal of Agricultural Sciences, 34(4): 880-886.) [11] 刘晓彬, 刘娜, 李福宽, 等. 2015. TRV介导的大豆基因瞬时沉默体系的建立[J].中国农业科学, 48(12): 2479-2486. (Liu X B, Liu N, Li F K, et al., 2015. Establishemnt of TRV-mediated transient gene-silencing system in Soybean[J]. Scientia Agricultura Sinica, 48(12): 2479-2486.) [12] 刘晓芬, 李方, 殷学仁, 等. 2013. 花青苷生物合成转录调控研究进展[J]. 园艺学报, 40(11): 2295-2306. (Liu X F, Li F, Yin X R, et al., 2013. Recent advances in the transcriptional regulation of anthocyanin biosynthesis[J]. Acta Horticulturae Sinica, 40(11): 2295-2306.) [13] 乔玲玲, 马雪蕾, 张昂, 等. 2016. 不同因素对赤霞珠果实理化性质及果皮花色苷含量的影响[J]. 西北农林科技大学学报(自然科学版), 44(02): 129-136. (Qiao L L, Ma X L, Zhang A, et al., 2016. Effects of different factors on physicochemical properties and the content of anthocyanin in the skin of Cabernet Sauvignon[J]. Journal of Northwest A&F University, 44(02): 129-136.) [14] 时剑, 童再康, 刘志高, 等. 2011. 换锦花种胚和叶片的组织培养研究[J]. 江西农业大学学报, 33(4): 665-669. (Shi J, Tong Z K, Liu Z G, et al.2011. Tissue culture of leaves and embryo in Lycoris sprengeri[J]. Acta Agriculturae Universitatis Jiangxiensis, 33(4): 665-669.) [15] 舒庆艳, 朱瑾, 门思琦, 等, 2018. 基于牡丹类黄酮糖基转移酶基因建立VIGS技术体系[J]. 园艺学报,45(01): 168-176. (Shu Q Y, Zhu J, Men S- Qet al., 2018. Establishing virus induced gene silencing (VIGS) system in tree peony using PsUFGT gene[J]. Acta Horticulturae Sinica, 45(01): 168-176.) [16] 宋震, 李中安, 周常勇. 2014. 病毒诱导的基因沉默(VIGS)研究进展[J]. 园艺学报, 41(09): 1885-1894. (Song ZH, Li ZH A, Zhou CH Y.2014. Research advances of virus-induced gene silencing (VIGS)[J]. Acta Horticulturae Sinica, 41(09): 1885-1894.). [17] 唐宜, 李凌飞, 王小菁. 2017. 非洲菊花瓣瞬时表达和病毒诱导的基因沉默(VIGS)系统的建立[J]. 植物生理学报, (03):221-228. (Tang Y, Li L F, Wang X J.2017. Establishment of transient expression of the African chrysanthemum petals and virus-induced gene silencing (VIGS) system[J]. Plant Physiology Journal, (03): 221-228.) [18] 王玲, 汤浩茹, 王小蓉, 等. 2017. 利用VIGS技术研究草莓FaMYB5的功能[J]. 园艺学报,44(01): 33-42. (Wang L, Tang H R, Wang X R, et al., 2017. Virus-Induced gene silencing as a tool of FaMYB5 gene function studies in strawberry[J]. Acta Horticulturae Sinica, 44(01): 33-42.) [19] 王亚茹, 姚允聪. 2015. TRV-GFP载体在麦秆菊上的应用[J]. 北京农学院学报, 30(4): 33-37. (Wang Y R,Yao Y D.2015. Application of TRV-GFP vector in straw flower plants[J]. Journal of Beijing University of Agriculture, 30(4): 33-37.) [20] 许海峰, 杨官显, 王意程, 等, 2018, 苹果 MdMYB32 通过自身EAR抑制序列抑制花青苷的生物合成[J], 中国农业科学, 51(24): 4690-4699. (Xu H F, Yang G X, Wang Y C, et al., 2018, Apple MdMYB32 inhibits the anthocyanin biosynthesis by its own EAR inhibitory sequence[J], 51(24): 4690-4699.) [21] 许振渊, 高燕会, 周芬静, 等. 2014. 换锦花LsMYB4基因的克隆与表达分析[J]. 园艺学报, 41(11): 2281-2290. (Xu ZH Y, Gao Y -H, Zhou F J, et al., 2014. Cloning and expression analysis of LsMYB4 gene in Lycoris sprengeri[J]. Acta Horticulturae Sinica, 41(11): 2281-2290.) [22] 张波, 袁娥. 2006. 石蒜属植物的观赏价值及在环境美化中的应用[J]. 金陵科技学院学报, 22(1): 86- 90. (Zhang B, Yuan E, 2006. Ornamental values of Lycoris and its applicationin environment beautification[J]. Journal of Jinling Institute of Technilogy, 22(1): 86-90.) [23] 张学英, 张上隆, 骆军, 等. 2004. 果实花色素苷合成研究进展[J]. 果树学报, 21(05): 456-460. (Zhang X Y, Zhang S L, Luo J, et al.2004. Advances in research on fruit anthoyanin synthesis[J]. Journal of Fruit Science, 21(05): 456-460. ) [24] 赵祯, 刘富中, 张映, 等, 2015. 茄子SmMsrA基因VIGS表达载体的构建及表达分析[J]. 园艺学报, 42(8): 1495-1504. (Zhao Z, Liu F Z,Zhang Y, et al., 2015. VIGS expression vector construction and expression analyses of SmMsrA gene in eggplant[J]. Acta Horticulturae Sinica, 42(8): 1495-1504.) [25] 周芬静. 2015. 换锦花R2R3-MYB类基因克隆及其表达研究[D], 硕士学位论文, 浙江农林大学, 导师: 高燕会, 25-30. (Zhou F J.2015. Cloning and expression analysis of R2R3-MYB genes in Lycoris sprengeri[D]. Thesis for M.S., Zhejiang Agricultural and Forestry University, Superviser: Gao Y H, pp.25-30.) [26] Ai T N, Naing A H, Arun M, et al.2017. Expression of RsMYB1, in Petunia, enhances anthocyanin production in vegetative and floral tissues[J]. Scientia Horticulturae, 214: 58-65. [27] Antonio G, Zhao M Z, John M, et al., 2010. Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in seedlings[J]. Plant Journal, 53(5): 814-827. [28] Burch-Smith T M, Anderson J C, Martin G B, et al.2004. Applications and advantages of virus-induced gene silencing for gene function studies in plants[J]. Plant Journal, 39(5): 734-746. [29] Cho J S, Nguyen V P, Jeon H W, et al.2016. Overexpression of PtrMYB119, a R2R3-MYB transcription factor from Populus trichocarpa, promotes anthocyanin production in hybrid poplar[J]. Tree Physiology, 36(9): 1162-1176. [30] Ekengren S K, Liu Y, Schiff M, et al.2003. Two MAPK cascades, NPR1, and TGA transcription factors play a role in Pto-mediated disease resistance in tomato[J]. The Plant Journal for Cell & Molecular Biology, 36(6): 905-917. [31] Feng K, Xu Z S, Que F, et al., 2017. An R2R3-MYB transcription factor, OjMYB1, functions in anthocyanin biosynthesis in Oenanthe javanic[J]. Planta, 247(4): 1-15. [32] Gao X, Britt R C, Shan L, et al.2011. Agrobacterium-mediated virus-induced gene silencing assay in cotton[J]. Journal of Visualized Experiments, (54): 1745. [33] Jian-Ping An, Rui Li, Feng-Jia Qu, et al., 2018, R2R3-MYB transcription factor MdMYB23 is involved in the cold tolerance and proanthocyanidin accumulation in apple[J], The Plant Journal, 96(3): 562-577 [34] Joo J, Choi H J, Lee Y H, et al.2013, A transcriptional repressor of the ERF family confers drought tolerance to rice and regulates genes preferentially located on chromosome 11[J]. Planta, 238(1): 155-170. [35] Kazan K.2006. Negative regulation of defence and stress genes by EAR-motif-containing repressors[J]. Trends in Plant Science, 11(3): 109-112. [36] Kim J, Park M, Jeong E S, et al.2017. Harnessing anthocyanin-rich fruit: A visible reporter for tracing virus-induced gene silencing in pepper fruit[J]. Plant Methods, 13:3. [37] Liu E, Page J E.2008. Optimized cDNA libraries for virus-induced gene silencing (VIGS) using tobacco rattle virus[J]. Plant Methods, 4(1): 5. [38] Orzaez D, Medina A, Torre S, et al., 2009. A visual reporter system for virus-induced gene silencing in tomato fruit based on anthocyanin accumulation[J]. Plant Physiology, 150(3): 1122-1134. [39] Shen X, Zhao K, Liu L, et al., 2014. A role for PaMYBA in ABA-regulated anthocyanin biosynthesis in red-colored sweet cherry cv. Hong Deng (Prunus avium L.)[J]. Plant & Cell Physiology, 55(5): 862-880. [40] Li Y J, Liu Y T, Qi F Tet al., 2020. Establishment of virus-induced gene silencing system and functional analysis of ScbHLH17 in Senecio cruentus[J]. Plant Physiology and Biochemistry 147: 272-279. [41] Sun Y G; Wang T, Liu M Yet al.,2020, Virus-induced gene silencing of SlPKY1 attenuates defense responses against gray leaf spot in tomato[J], Scientia Horticulturae, 264: 109149. [42] Zhou H, Peng Q, Zhao J B, et al., 2016. Multiple R2R3-MYB transcription factors involved in the regulation of anthocyanin accumulation in peach flower[J]. Frontiers in Plant Science,7: 1557