Expression Characteristics of TFEB Gene and Its Relationship with the Number of Lysosomes in Adipocytes in Broilers (Gallus gallus)
GAO Zhuo-Ran, DING Ran, CHEN Yao-Feng, ZHAI Xiang-Yun, LI Hui, DU Zhi-Qiang*
Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture / Key Laboratory of Animal Genetics, Breeding and Reproduction, Ordinary Institution of Higher Education Department of Heilongjiang Province / College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
Abstract:On the lysosome surface mammalian target of rapamycin (mTOR) can phosphorylate transcription factor EB (TFEB) to cause nuclear translocation and thus plays a biological role in lysosomal biosynthesis, autophagy and lipid metabolism. In this study, The Northeast Agricultural University High and Low Fat (NEAUHLF) broiler (Gallus gallus) lines were used to detect the expression of TFEB in abdominal fat tissue and adipocytes by qRT-PCR. In addition, TFEB protein was localized in broiler adipocytes by immunofluorescence, and the changes of lysosome number during the differentiation of broiler adipocytes were analyzed. The results showed that the expression of TFEB in abdominal fat of lean line was higher than that of fat line at 1, 4 and 7 weeks of age, and the expression of TFEB in abdominal fat of 2 lines was significantly different at 4 weeks of age. During the differentiation the expression of TFEB in primary preadipocytes of 2 lines showed an opposite trend. To be precise, the expression of TFEB decreased during the differentiation of fat line broilers and increased in that of lean lines. At the same time, the expression of TFEB decreased during the differentiation of primary preadipocytes of arbor acres (AA) broilers, which was significantly different between 72 h and 0 h. Moreover, TFEB protein was detected in the cytoplasm and nucleus of adipocytes of broilers and the number of lysosomes decreased during adipocyte differentiation. The results would lay the foundation for further investigating the molecular mechanisms of how TFEB regulates lysosome biogenesis and affects the fat metabolism in broilers.
高卓然, 丁然, 陈耀峰, 翟祥云, 李辉, 杜志强. 肉鸡TFEB基因的表达特征及其与脂肪细胞溶酶体数量的关系[J]. 农业生物技术学报, 2020, 28(1): 129-138.
GAO Zhuo-Ran, DING Ran, CHEN Yao-Feng, ZHAI Xiang-Yun, LI Hui, DU Zhi-Qiang. Expression Characteristics of TFEB Gene and Its Relationship with the Number of Lysosomes in Adipocytes in Broilers (Gallus gallus). 农业生物技术学报, 2020, 28(1): 129-138.
[1] 杜志强, 董翔宇, 汪礼建, 等. 2018. 长链非编码RNA基因NRON与肉鸡生长性状关联分析[J]. 东北农业大学学报,49(06): 70-79. (Du Z Q, Dong X Y, Wang L J, et al.2018. Association analysis on a long non-coding RNA NRON with growth traits in broilers[J]. Journal of Northeast Agricultural University, 49(06): 70-79.) [2] 范宜俊, 刘伟. 2019. 转录因子EB调节机制的研究进展[J]. 中华肺部疾病杂志(电子版), 12(01): 104-107. (Fan Y J, Liu W.2019. Research progress on the regulatory mechanism of transcription factor EB[J]. Chinese Journal of Lung Diseases (Electronic Edition), 12(01): 104-107.) [3] 李国辉, 李东, 祁馨宇, 等. 2019. 细胞自噬在个体发育和肿瘤发生中的作用[J]. 生命科学研究, 23(01): 46-53. (Li G H, Li D, Qi X Y, et al.2019. The roles of autophagy in the individual development and tumorigenesis[J]. Life Science Research, 23(01): 46-53.) [4] 李嘉煜, 张心扬, 李辉, 等. 2018. TCF21基因对鸡前脂肪细胞增殖的影响[J]. 中国畜牧杂志, 54(09): 45-49. (Li J Y, Zhang X Y, Li H, et al.2018. Effect of TCF21 on proliferation of chicken pre-adipocytes[J]. Chinese Journal of Animal Science, 54(09): 45-49.) [5] 李辉, 杜志强, 王守志, 等. 2016. 白羽快大型肉鸡育种的过去、现在和将来[J]. 中国家禽, 38(19): 1-8. (Li H, Du Z Q, Wang S Z, et al.2106. Past, present and future of white feather fast large broiler breeding[J]. China Poultry, 38(19): 1-8.) [6] 李宜醒, 姚伟静, 易聪. 2019. 细胞自噬研究进展[J]. 中国细胞生物学学报, 41(02): 192-201. (Li Y X, Yao W J, Yi C.2019. The research progress of autophagy[J]. Chinese Journal of Cell Biology, 41(02): 192-201.) [7] 梁浩, 李敏, 董翔宇, 等. 2017. 肉鸡腹脂双向选择系中RNA编辑位点的鉴定研究[J]. 畜牧兽医学报, 48(09): 1611-1623. (Liang H, Li M, Dong X Y, et al.2107. Identification of RNA editing sites in chicken lines divergently selected for abdominal fat content[J]. Chinese Journal of Animal and Veterinary Sciences, 48(09): 1611-1623.) [8] 韩浩月, Salahhe.2016. 肉鸡脂肪沉积调控[J]. 国外畜牧学(猪与禽), 36(12): 32-34. (Han H Y, Salahhe.2016. Control of fat deposition in broilers[J]. Livestock Science Abroad (pig and poultry), 36(12): 32-34.) [9] 童彦菊, 谢克勤, 宋福永. 2015. 转录因子EB与自噬相关疾病[J]. 毒理学杂志, 29(05): 382-385. (Tong Y J, Xie K Q, Song F Y.2015. Transcription factor EB and autophagy-related diseases[J]. Journal of Toxicology, 29(05): 382-385.) [10] 王晓芳, 姜云瀚, 孙军. 2012. 细胞死亡的新理论:溶酶体线粒体轴理论[J]. 中国生物化学与分子生物学报, 28(10): 892-896. (Wang X F, Jiang Y H, Sun J.2012. Lysosomal-mitochondrial axis-a new theory of cell death[J]. China Journal of Biochemistry and Molecular Biology, 28(10): 892-896.) [11] 余琳娜, 柳唯意, 马岚青. 2016. TFEB与非酒精性脂肪肝关系的研究进展[J]. 山东医药, 56(42): 106-109. (Yu L N, Liu W Y, Ma L Q.2016. Research progress on the relationship between TFEB and non-alcoholic fatty liver[J]. Shandong Medical Journal, 56(42): 106-109.) [12] 赵迪, 朱燕婷, 史道华. 2014. mTOR介导转录因子调控细胞糖脂代谢的研究进展[J]. 基础医学与临床, 34(11): 1574-1577. (Zhao D, Zhu Y T, Shi D H.2014. Research progress in cell metabolism of glucose and lipid regulated by transcription factors via mTOR[J]. Basic Medicine and Clinic, 34(11): 1574-1577.) [13] 仲昭宇, 田野, 杨力明, 等. 2016. TFEB调控脂质代谢稳定动脉粥样硬化斑块的新机制[J]. 基础医学与临床, 36(01): 116-120. (Zhong Z Y, Tian Y, Yang L M, et al.2016. A novel mechanism of TFEB regulating lipid metabolism for stabilizing atherosclerotic plagues[J]. Basic Medicine and Clinic, 36(01): 116-120.) [14] Ghosh A, Pahan K.2016. PPARα in lysosomal biogenesis: A perspective[J]. Pharmacological Research, 103: 144-148. [15] Ji J, Petropavlovskaia M, Khatchadourian A, et al.2019. Type 2 diabetes is associated with suppression of autophagy and lipid accumulation in β-cells[J]. Journal of Cellular and Molecular Medicine, 23(4): 2890-2900. [16] Kaneko H, Kobayashi M, Mizunoe Y, et al.2018. Taurine is an amino acid with the ability to activate autophagy in adipocytes[J]. Amino Acids, 50(5): 527-535. [17] Kaushik S, Massey A C, Cuervo A M.2006. Lysosome membrane lipid microdomains: Novel regulators of chaperone-mediated autophagy[J]. EMBO Journal, 25(17): 3921-3933. [18] Kim Y S, Lee H M, Kim J K, et al.2017. PPAR-α activation mediates innate host defense through induction of tfeb and lipid catabolism[J]. The Journal of Immunology, 198(8): 3283-3295. [19] Laplante M, Sabatini D M.2013. Regulation of mTORC1 and its impact on gene expression at a glance[J]. Journal of Cell Science, 126(Pt 8): 1713-1719. [20] Li Z, Wang Y, Tian X, et al.2017. Characterization of the visfatin gene and its expression pattern and effect on 3T3-L1 adipocyte differentiation in chickens[J]. Gene, 632: 16-24. [21] Liu L, Tao Z, Zheng L D, et al.2016. FoxO1 interacts with transcription factor EB and differentially regulates mitochondrial uncoupling proteins via autophagy in adipocytes[J]. Cell Death Discovery, 2: 16066. [22] Ma X, Godar R J, Liu H, et al.2012. Enhancing lysosome biogenesis at-tenuates bnip3-induced cardiomyocyte death[J]. Autophagy, 8(3): 297-309. [23] Mizunoe Y, Sudo Y, Okita N, et al.2017. Involvement of lysosomal dysfunction in autophagosome accumulation and early pathologies in adipose tissue of obese mice[J]. Autophagy, 13(4): 642-653. [24] Napolitano G, Ballabio A.2016. TFEB at a glance[J]. Journal of Cell Science, 129(13): 2475-2481. [25] Park H W, Park H, Semple I A, et al.2014. Pharmacological correctionof obesity-induced autophagy arrest using calcium channel blockers[J]. Nature Communications, 5: 4834. [26] Pastore N, Vainshtein A, Klisch T J, et al.2017. TFE3 regulates whole-body energy metabolism in cooperation with TFEB[J]. EMBO Molecular Medicine, 9(5): 605-621. [27] Sabatini, David M.2017. Twenty-five years of mTOR: Uncovering the link from nutrients to growth[J]. Proceedings of the National Academy of Sciences of the USA, 114(45): 11818-11825. [28] Settembre C, De Cegli R, Mansueto G, et al.2013b. TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop[J]. Nature Cell Biology,15(6): 647-658. [29] Settembre C, Di Malta C, Polito V A, et al.2011. TFEB links autophagy to lysosomal biogenesis[J]. Science, 332(11): 1429-1433. [30] Settembre C, Fraldi A, Medina D L, et al.2013a. Signals from the lysosome: A control centre for cellular clearance and energy metabolism[J]. Nature Reviews Molecular Cell Biology, 14: 283-296. [31] Singh R, Kaushik S, Wang Y, et al.2009. Autophagy regulates lipid metabolism[J]. Nature, 458(7242): 1131-1135. [32] Thelen A M, Zoncu R.2017. Emerging Roles for the Lysosome in Lipid Metabolism[J]. Trends in Cell Biology, 27(11): 833-850. [33] Wang G, Kim W K, Cline M A, et al.2017. Factors affecting adipose tissue development in chickens: A review[J]. Poultry Science, 96(10): 3687-3699.