Cloning of GNAQ Gene in Yak (Bos grunniens) and Its Expression in Female Reproductive Axis
CHEN Yi-Wei1,2,3, CHU Min1,3, ZHANG Ren-Zheng1,3, XIE Jian-Peng1,3, MA Lan-Hua1,2,3, PAN He-Ping2, YAN Ping1,3,*
1 Lanzhou Institute of Husbandry and Pharmaceutical Sciences/Key Laboratory of Yak Breeding Engineering Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; 2 College of Life Science and Engineering, Northwest Minzu University, Lanzhou 730030, China; 3 Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
Abstract:G protein subunit alpha Q (GNAQ) regulate G protein-coupled receptors and mediate downstream signaling pathways through encoding Gαq protein, which involves many physiological processes such as nutrient metabolism, reproduction regulation and cell signal transduction. This study aimed to explore the expression of GNAQ in reproductive axons of female yak (Bos grunniens). The samples of hypothalamus, pituitary and ovarian of healthy female yaks (adult) during follicular phase were collected. The CDS of GNAQ gene was cloned with yak ovarian cDNA as template by reverse transcription-PCR (RT-PCR) and it was analyzed by bioinformatics software. The hypothalamic-pituitary-ovarian reproductive axis (HPOA) expression characteristics of yak GNAQ gene and protein levels were detected by qRT-PCR, Western blot and immunohistochemistry (IHC) .The results showed that the CDS of yak GNAQ gene (GenBank No. OP811271) was 1 080 bp in length and encoded 359 amino acids. GNAQ was close to amino acid homology of ordinary cattle (B. taurus), and distant to mouse (Mus musculus), and it was highly conserved in the evolution of the species. It was found that GNAQ gene and protein levels were expressed in hypothalamus, pituitary and ovary of yak by qRT-PCR and Western blot, and the highest expression level was found in pituitary, the expression level in hypothalamus was significantly higher than in ovary (P<0.05). Immunohistochemistry results showed that GNAQ protein was strongly positive in ovarian granulosa cells and was mainly expressed in cytoplasm, which was consistent with the prediction of subcellular localization. This study provides theoretical basis for further exploration of the role of GNAQ gene in reproductive physiology regulation of yak, which is helpful to study the regulation and mechanism of seasonal estrus in yak.
[1] 陈卫刚. 2020. 甘加型藏羊发情周期下丘脑-垂体-卵巢轴kisspeptin/GPR54的表达与分布[D]. 硕士学位论文, 甘肃农业大学, 导师: 何玉琴, pp. 3-6. (Chen W G.2020. Expression and distribution of kisspeptin/GPR54 in the hypothalamic-pituitary-ovary axis of Ganjia Tibetan sheep during the estrous cycle[D]. Thesis for M.S., Gansu Agricultural University, Supervisor: He Y Q, pp. 3-6.) [2] 寸静宇, 刘秋月, 王翔宇, 等. 2019. 小尾寒羊FSHβ和LHβ基因在生殖轴的表达研究[J]. 中国畜牧杂志, 55(01): 37-41. (Cun J Y, Liu Q Y, Wang X Y, et al.2019. Expression of FSHβ and LHβ genes in reproductive axis of Small Tail Han sheep[J]. Chinese Journal of Animal Science, 55(01): 37-41.) [3] 杜旭旭, 梅山, 史远刚, 等. 2020. Kisspeptin/GPR54在哺乳动物繁殖上的研究进展[J]. 畜牧兽医学报, 51(10): 2341-2348. (Du X X,Mei S,Shi Y G, et al.2020. Research progress of kisspeptin/GPR54in mammalian reproduction[J]. Acta Veterinaria et Zootechnica Sinica, 51(10): 2341-2348.) [4] 韩小红, 何翃闳, 王靖雷, 等. 2019. 牦牛p38MAPK在雌性主要生殖器官中的表达[J]. 畜牧兽医学报, 50(09): 1802-1812. (Han X H, He H H, Wang J L, et al.2019. Expression of p38MAPK in the main reproductive organs of female yaks (Bos grunniens)[J]. Acta Veterinaria et Zootechnica Sinica, 50(09): 1802-1812.) [5] 何治锋. 2021. 饲料营养水平对动物繁殖性能的影响[J]. 今日畜牧兽医, 37(02): 61-62. (He Z F.2021. Effects of nutrient level of feed on reproductive performance of animals[J]. Today Animal Husbandry and Veterinary Medicine, 37(02): 61-62.) [6] 侯鹏霞, 王建东, 于洋, 等. 2021. 日粮营养水平对妊娠母牛血清指标、繁殖性能的影响[J]. 饲料研究, 44(14): 1-4. (Hou P X, Wang J D, Yu Y, et al.2021. Effect of dietary nutrition level on serum indices and reproductive performance of pregnant cows[J]. Feed Research, 44(14): 1-4.) [7] 黄育雯. 2020. 安格斯牛下丘脑和垂体转录组学的分析及与繁殖性状的相关验证[D]. 硕士学位论文, 吉林大学, 导师: 李纯棉, pp. 9-13. (Huang Y W.2020. Analysis of hypothalamus and pituitary transcriptomics in Angus cattle and verification of their correlation with reproductive traits[D]. Thesis for M.S., Jilin University, Supervisor: Li C M, pp. 9-13.) [8] 李振. 2017. 绵羊Gnaq和Gnas基因生物学功能研究[D]. 硕士学位论文, 山西农业大学, 导师: 庞全海, pp. 18-70. (Li Z.2017. Study on the biological function of Gnaq and Gnas genes in sheep[D]. Thesis for M.S., Shanxi Agricultural University, Supervisor: Pang Q H, pp. 18-70.) [9] 梁慧慧. 2018. 绵羊下丘脑神经细胞中GNAQ基因及其甲基化对GnRH分泌的影响[D]. 硕士学位论文, 石河子大学, 导师: 赵宗胜, pp. 2-47. (Liang H H.2018. The effect of GNAQ expression and methylation on GnRH secretion in sheep hypothalamic neurons[D]. Thesis for M.S., Shihezi University, Supervisor: Zhao Z S, pp. 2-47.) [10] 林杉. 2015. 营养诱导舍饲绵羊非繁殖季节发情相关microRNA筛选及其靶基因功能验证[D]. 硕士学位论文,石河子大学, 导师: 赵宗胜, pp. 58-77. (Lin S.2015. The microRNA selection and target gene function identify controlled by nutrition level of estrous stall-feed sheep in non-breeding season[D]. Thesis for M.S., Shihezi University, Supervisor: Zhao Z S, pp. 58-77.) [11] 刘欣. 2014. 母牛生殖系统雌、孕激素受体变化及输卵管上皮细胞制备[D]. 硕士学位论文, 东北农业大学, 导师: 张贵学, pp. 1-8. (Liu X.2014. Distribution of estrogen and progesterone recepter in female bovine genital system and establishment of oviduct epithelial cell bank[D]. Thesis for M.S., Northeast Agricultural University, Supervisor: Zhang G X, pp. 1-8.) [12] 梅山, 杜旭旭, 杨朝云, 等. 2020. Kisspeptin/GPR54在性腺中调控动物卵泡发育的研究进展[J]. 黑龙江动物繁殖, 28(05): 27-33. (Mei S, Du X X, Yang C Y, et al.2020. Research progress of kisspeptin/GPR54 in regulating animal follicular development in gonads[J]. Heilongjiang Journal of Animal Reproduction, 28(05): 27-33.) [13] 石仙, 熊显荣, 兰道亮, 等. 2017. 牦牛CCND2基因的克隆及其在不同发情时期卵巢中的表达[J]. 中国农业科学, 50(13): 2604-2613. (Shi X, Xiong X R, Lan D L, et al.2017. Cloning and expression analysis of CCND2 gene in yak ovaries during different periods of estrus[J]. Scientia Agricultura Sinica, 50(13): 2604-2613.) [14] 孙鏖, 何芳, 浣成, 等. 2021. 初情期母牛下丘脑-垂体-卵巢转录组分析[J]. 中国兽医学报, 41(02): 345-352. (Sun A, He F, Huan C, et al.2021. RNA-Seq analysis of hypothalamic-pituitary-ovary (HPO) axis in pubertal cows[J]. Chinese Journal of Veterinary Science, 41(02): 345-352.) [15] 田占伟. 2015. 利用营养水平诱导新疆哈萨克绵羊产后发情激素变化规律及部分相关基因表达研究[D]. 硕士学位论文, 石河子大学, 导师: 赵宗胜, pp. 3-40. (Tian Z W.2015. The research of some related genes expression and the hormones changing rules of postpartum oestrus sheep after induced with different nutrition levels[D]. Thesis for M.S., Shihezi University, Supervisor: Zhao Z S, pp. 3-40.) [16] 王军, 孙蕾, 周海柱, 等. 2013. 日粮低营养对母羊下丘脑KiSS-1/GPR54系统表达及相关激素分泌的影响[J]. 畜牧兽医学报, 44(12): 1913-1918. (Wang J, Sun L, Zhou H Z, et al.2013. Effect of low dietary nutrition on hypothalamic expression of KiSS-1/GPR54 system and relative hormones secretion in ewes[J]. Acta Veterinaria et Zootechnica Sinica, 44(12): 1913-1918.) [17] 王连群, 侯芳, 周岭, 等. 2015. Kisspeptin/GPR54信号通路对下丘脑-脑垂体-性腺轴的调节机制[J]. 黑龙江畜牧兽医, 57(07): 52-54. (Wang L Q, Hou F, Zhou L, et al.2015. Regulation mechanism of Kisspeptin/GPR54 signaling pathway on hypothalamic-pituitary-gonad axis[J]. Heilongjiang Animal Science and Veterinary Medicine, 57(07): 52-54.) [18] 袁晓晴. 2018. Gαq对调节性B细胞分化与功能的调控及机制研究[D]. 硕士学位论文, 厦门大学, 导师: 石桂秀, pp. 1-5. (Yuan X Q.2018. The role and mechanism of Gαq in the differentiation and function of regulatory B cells[D]. Thesis for M.S., Xiamen University, Supervisor: Shi G X, pp. 1-5.) [19] 张瑞, 王靖雷, 潘阳阳, 等. 2020. 牦牛CAV1基因克隆及其在雌性生殖系统主要器官中的表达定位[J]. 农业生物技术学报, 28(04): 681-692. (Zhang R, Wang J L, Pan Y Y, et al.2020. Cloning of yak (Bos grunniens) CAV1 gene and its expression in major organs of female reproductive system[J]. Journal of Agricultural Biotechnology, 28(04): 681-692.) [20] 郑磊. 2018. GNAQ/GNA11突变在葡萄膜黑色素瘤中的研究进展[J]. 中华实验眼科杂志, 36(10): 791-795. (Zheng L.2018. Research progress of GNAQ/GNA11 mutation in uveal melanoma[J]. Chinese Journal of Experimental Ophthalmology, 36(10): 791-795.) [21] Akin-Bali D. F.2021. Bioinformatics analysis of GNAQ, GNA11, BAP1, SF3B1,SRSF2, EIF1AX, PLCB4, and CYSLTR2 genes and their role in the pathogenesis of uveal melanoma[J]. Ophthalmic Genetics, 42(6): 1-12. [22] Bosch E, Alviggi C, Lispi M, et al.2021. Reduced FSH and LH action: Implications for medically assisted reproduction[J]. Human Reproduction (Oxford, England), 36(6): 1469-1480. [23] D'Occhio M J, Baruselli P S, Campanile G.2019. Influence of nutrition, body condition, and metabolic status on reproduction in female beef cattle: A review[J]. Theriogenology, 125(9): 277-284. [24] Hua G, George J W, Clark K L, et al.2021. Hypo-glycosylated hFSH drives ovarian follicular development more efficiently than fully-glycosylated hFSH: Enhanced transcription and PI3K and MAPK signaling[J]. Human Reproduction (Oxford, England), 36(7): 1891-1906. [25] Ilahi I, Haq T U.2021. MINI REVIEW: Role of Kisspeptin-GPR54 system in regulation of reproductive functions in human and other mammals[J]. Pakistan Journal of Pharmaceutical Sciences, 34(1): 177-184. [26] Mizuno N, Itoh H.2009. Functions and regulatory mechanisms of Gq-signaling pathways[J]. Neurosignals, 17(1): 42-54. [27] Mönkkönen K, Aflatoonian R, Lee K, et al.2007. Hormonal regulation of Galphai2 and mPRalpha in immortalized human oviductal cell line OE-E6/E7[J]. Molecular Human Reproduction, 13(12): 845-51. [28] Padda J, Khalid K, Moosa A, et al.2021. Role of kisspeptin on hypothalamic-pituitary-gonadal pathology and its effect on reproduction[J]. Cureus, 13(8): e17600. [29] Parhar I S, Ogawa S, Sakuma Y, et al.2004. Laser-captured single digoxigenin-labeled neurons of gonadotropin-releasing hormone types reveal a novel G protein-coupled receptor (Gpr54) during maturation in cichlid fish[J]. Endocrinology, 145(8): 3613-3618. [30] Stamatiades G A, Kaiser U B.2018. Gonadotropin regulation by pulsatile GnRH: Signaling and gene expression[J]. Molecular and Cellular Endocrinology, 463(6): 131-141. [31] Tzoupis H, Nteli A, Androutsou M E, et al.2020. Gonadotropin-releasing hormone and GnRH receptor: Structure, function and drug development[J]. Current Medicinal Chemistry, 27(36): 6136-6358. [32] Wettschureck N, Offermanns S.2005. Mammalian G proteins and their cell type specific functions[J]. Physiological Reviews, 85(4): 1159-1204. [33] Xie J, Kalwar Q, Yan P, et al.2020. Effect of concentrate supplementation on the expression profile of miRNA in the ovaries of Yak during non-breeding season[J]. Animals (Basel), 10(9): 16-40. [34] Yang H, Liu X, Hu G, et al.2018. Identification and analysis of microRNAs-mRNAs pairs associated with nutritional status in seasonal sheep[J]. Biochemical and Biophysical Research Communications, 499(2): 321-327. [35] Zi X D.2003. Reproduction in female yaks (Bos grunniens) and opportunities for improvement[J]. Theriogenology, 59(5-6): 1303-1312.