Development of KASP Assays of 9 Genetic Defects in Simmental Cattle (Bos taurus)
PEI Fen1, ZHANG Ke1, KHAN Md Yousuf Ali1, SI Jing-Fang1, DAI Dong-Mei1, OU Si-Hai2, YANG Yang2, ZHAO Zong-Sheng3, WANG Ya-Chun1, ZHANG Yi1,*
1 College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; 2 Shihezi Animal Husbandry and Veterinary Workstation, The Eighth Division of Xinjiang Production and Construction Corps, Shihezi 832000, China; 3 College of Animal Science and Technology, Shihezi University, Shihezi 832000, China
Abstract:Simmental cattle (Bos taurus) and its related breeds are the main dual-purpose breeds and beef breeds in China. In recent years, multiple genetic defects, causing early embryonic death, newborn calf defects, reduced fertility and other problems and resulting in economic losses to farms, have been identified in Simmental cattle populations using genomic technologies. This study aimed to develop an accurate and efficient method based on kompetitive allele-specific PCR (KASP) assays to screen 9 genetic defects in Simmental cattle, including Dwarfism, Arachnomelia syndrome, Syndactyly, Thrombopathy, Zinc deficiency-like disorders, Bovine male subfertility, Brown Swiss haplotype 2, Fleckvieh haplotype 2 and Fleckvieh haplotype 4. The call rate was 100% for the 96 tested samples, and carriers were detected on 7 genetic defects. This study provides a technical tool for screening and management of harmful genes during the importation of genetic materials, selection of sires and mating programs of cows in China.
[1] 初芹, 焦士会, 王雅春, 等. 2013. 牛蜘蛛腿综合征两个致病位点检测方法的建立[J]. 遗传, 35(05): 623-627. (Chu Q, Jiao S H, Wang Y C, et al.2013. Establishment of the detection method for two causative genes of cattle arachnomelia syndrome[J]. Hereditas, 35(05): 623-627.) [2] 和玉伟, Abdullah I O, 陈绍祜, 等. 2021. 北京地区奶牛HH6遗传缺陷基因分布初探[J]. 中国奶牛, (06): 13-17. (He Y W, Abdullah I O, Chen S H, et al. 2021. Prevalence of HH6 genetic defect in dairy herds of Beijing[J]. China Dairy Cattle, (06): 13-17.) [3] 纪皓楠, 唐韶青, 张可, 等. 2023. 中国荷斯坦牛常见遗传缺陷基因分子筛查[J]. 中国畜牧杂志, 59(05): 81-86. (Ji H N, Tang S Q, Zhang K, et al.2023. Molecular screening of common genetic defects in Chinese Holstein cattle[J]. Chinese Journal of Animal Science, 59(05): 81-86.) [4] 劳兰兰, 吕小青, 刘林, 等. 2017. 国内荷斯坦种公牛HH4遗传缺陷基因筛查[J]. 中国畜牧杂志, 53(12): 33-36. (Lao L L, Lv X Q, Liu L, et al.2017. Carrier screening for genetic defect HH4 in Chinese Holstein bulls[J]. Chinese Journal of Animal Science, 53(12): 33-36.) [5] 刘雪凝, 阎来庆, 刘巧香, 等. 2022. 中国牛精液进口依赖程度及原因分析[J]. 中国奶牛, 384(08): 18-23. (Liu X L, Yan L Q, Liu Q X, et al.2022. Analysis of the degree and reasons of bovine semen import dependence in China[J]. China Dairy Cattle, 384(08): 18-23.) [6] 吕小青, 劳兰兰, 赵凤, 等. 2019. 北京地区荷斯坦母牛群体HH1遗传缺陷基因抽样调研[J]. 中国奶牛, (01): 12-14. (Lv X Q, Lao L L, Zhao F, et al. 2019. The random sampling for genetic defect HH1 in Chinese Holstein cows in Beijing[J]. China Dairy Cattle, (01): 12-14.) [7] 王志伟, 乔祥梅, 王志龙, 等. 2020. 云南小麦品种(系)抗逆性相关基因的KASP标记检测[J]. 西南农业学报, 33(08): 1601-1607. (Wang Z W, Qiao X M, Wang Z L, et al.2020. Identification of genes associated with stress resistance in Yunnan wheat cultivars (lines) by KASP assays[J]. Southwest China Journal of Agriculture Sciences, 33(08): 1601-1607.) [8] 韦宇, 李孝琼, 何新柳, 等. 2019. 基于KASP技术的稻瘟病抗性基因Pi9分子标记的开发与评价[J]. 西南农业学报, 32(06): 1216-1222. (Wei Y, Li X Q, He X L, et al.2019. Development and evaluation of rice blast resistance gene (Pi9) SNP molecular markers based on KASP technology[J]. Southwest China Journal of Agriculture Sciences, 32(06): 1216-1222.) [9] 许红喜, 张铁岩, 张志芬, 等. 2020. 西门塔尔牛最新研究进展[J]. 中国牛业科学, 2020, 46(05): 63-65, 72. (Xu H X, Zhang T Y, Zhang Z F, et al.2020. The latest research progress of Simmental cattle[J]. China Cattle Science, 46(05): 63-65, 72.) [10] 颜泽, 肖炜, 张胜利, 等. 2021. 基于KASP技术的牛3种无角基因联合检测方法研究[J]. 农业生物技术学报, 29(03): 610-618. (Yan Z, Xiao W, Zhang S L, et al.2021. Multiplex detection of three cattle (Bos taurus) polled variants based on KASP assay[J]. Journal of Agricultural Biotechnology, 29(03): 610-618.) [11] 杨光鹏, 兰欣怡. 2019. 西门塔尔牛育种技术的研究进展及应用[J]. 中国乳业, (09): 51-58. (Yang G P, Lan X Y. 2019. Research progress and application of breeding technology for Simmental cattle[J]. China Dairy, (09): 51-58.) [12] 张可, 欧四海, 杨阳, 等. 2023. 西门塔尔牛常见遗传缺陷及其分子机制研究进展[J]. 中国畜牧杂志, 59(07):40-45. (Zhang K, Ou S H, Yang Y, et al.2023. Progress in the study of common genetic defects and their molecular mechanisms in Simmental cattle[J]. Chinese Journal of Animal Science, 59(07):40-45. [13] 张毅, 孙东晓, 肖炜, 等. 2020. 影响荷斯坦牛繁殖力及犊牛健康的遗传缺陷基因研究进展[J]. 中国畜牧杂志, 56(08): 1-8. (Zhang Y, Sun D X, Xiao W, et al.2020. Genetic defect genes affecting cow fertility and calf survivability in Holstein cattle[J]. Chinese Journal of Animal Science, 56(08): 1-8.) [14] 朱凯, 刘光磊, 张长斌, 等. 2014. 荷斯坦牛遗传缺陷病研究进展[J]. 中国奶牛, (05): 17-20. (Zhu k, Liu G L, Zhang C B, et al. 2014. Advances in research on genetic deficiency diseases of Holstein cattle[J]. China Dairy Cattle, (05):17-20.) [15] 周月君. 2010. 奶牛单基因遗传缺陷研究进展[J]. 中国牛业科学, (05): 46-50. (Zhou Y J. 2010. Advances in the study of monogenic genetic defects in dairy cows[J]. China Cattle Science, (05): 46-50.) [16] Boudreaux M K, Schmutz S M, French P S.2007. Calcium diacylglycerol guanine nucleotide exchange factor I (CalDAG-GEFI) gene mutations in a thrombopathic Simmental calf[J]. Veterinary Pathology, 44(6): 932-935. [17] Charlier C, Coppieters W, Rollin F, et al.2008. Highly effective SNP-based association mapping and management of recessive defects in livestock[J]. Nature Genetics, 4(40): 449-454. [18] Drögemüller C, Tetens J, Sigurdsson S, et al.2010. Identification of the bovine Arachnomelia mutation by massively parallel sequencing implicates sulfite oxidase (SUOX) in bone development[J]. PLOS Genetics, 6(8): e1001079. [19] Drögemüller C, Leeb T, Harlizius B, et al.2007. Congenital syndactyly in cattle: Four novel mutations in the low density lipoprotein receptor-related protein 4 gene (LRP4)[J]. BMC Genetics, 8(1): 5. [20] Gottwald V W.1967. The occurrence of dwarfism in the offspring of a Fleckvieh bull[J]. Reproduction in Domestic Animals, 2: 63-67. [21] He C, Holme J, Anthony J.2014. SNP genotyping: The KASP assay[J]. Methods in Molecular Biology, 1145: 75-86. [22] Hubert P, Sabine K, Christine W, et al.2014. A nonsense mutation in TMEM95 encoding a nondescript transmembrane protein causes idiopathic male subfertility in cattle[J]. PLOS Genetics, 10(1): e1004044. [23] Jiao S, Chu Q, Wang Y, et al.2013. Identification of the causative gene for Simmental arachnomelia syndrome using a network-based disease gene prioritization approach[J]. PLOS ONE, 8(5): e64468. [24] Jung S, Pausch H, Langenmayer M C, et al.2014. A nonsense mutation in PLD4 is associated with a zinc deficiency-like syndrome in Fleckvieh cattle[J]. BMC Genomics, 15(1): 623. [25] Kaur B, Mavi G S, Gill M S, et al.2020. Utilization of KASP technology for wheat improvement[J]. Cereal Research Communications, 48(4): 409-421. [26] Lister D L, Jones H, Jones M K, et al.2013. Analysis of DNA polymorphism in ancient barley herbarium material: Validation of the KASP SNP genotyping platform[J]. Taxon, 62(4): 779-789. [27] Pausch H, Schwarzenbacher H, Burgstaller J, et al.2015. Homozygous haplotype deficiency reveals deleterious mutations compromising reproductive and rearing success in cattle[J]. BMC Genomics, 16: 312. [28] Rieck G W, Schade W.1975. Arachnomelia (spider limes), a new hereditary fatal malformation syndrom of cattle[J]. German Veterinary Weekly, 82: 342-347. [29] Schwarzenbacher H, Burgstaller J, Seefried F R, et al.2016. A missense mutation in TUBD1 is associated with high juvenile mortality in Braunvieh and Fleckvieh cattle[J]. BMC Genomics, 17(1): 400. [30] Semagn K, Babu R, Hearne S, et al.2014. Single nucleotide polymorphism genotyping using kompetitive allele specific PCR (KASP): Overview of the technology and its application in crop improvement[J]. Molecular Breeding, 33(1): 1-14. [31] Zhang Y, Fan X H, Sun D X, et al.2012. A novel method for rapid and reliable detection of complex vertebral malformation and bovine leukocyte adhesion deficiency in Holstein cattle[J]. Journal of Animal Science and Biotechnology, 3(3): 130-135. [32] Zhang Y, Liang D, Huang H T, et al.2020. Technical note: Development and application of KASP assays for rapid screening of 8 genetic defects in Holstein cattle[J]. Journal of Dairy Science, 103(1): 619-624.