Screening and Identification of Interaction Proteins of MeAHL19 in Cassava (Manihot esculenta)
ZHANG Jian-Yu1,2, WANG Xiao-Tong1,2, GENG Sha2,3, WU Zhi-Hao2,3, REN Si-Yang1,2, LI Rui-Mei2, YAO Yuan2, GUO Jian-Chun2, LIU Jiao2,*, HU Xin-Wen1,*
1 School of Life Sciences, Hainan University, Haikou 570228, China; 2 Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences/Hainan Institute for Tropical Agricultural, Haikou 571101, China; 3 College of Tropical Crops, Hainan University, Haikou 570228, China
Abstract:The AT-hook motif nuclear localized protein (AHL) family genes contain a unique combination of 1 or 2 AT-hook domains and regulate various biological processes in plants. To explore the biological function of cassava (Manihot esculenta) AHL family gene MeAHL19 and its role in the protein interaction network, in this study, the bait vector pGBKT7-MeAHL19 was constructed using T4 ligase and used to screen the cassava cDNA library via the yeast (Saccharomyces cerevisiae) two-hybrid (Y2H) library screening system. Real-time quantitative PCR method was used to detect gene expression patterns of MeAHL19 and the interacting proteins. The results showed that 20 positive clones were obtained through Y2H screening. Eight candidate interacting proteins were identified by PCR amplification and sequencing alignment. Y2H test confirmed the interaction between MeAHL19 and ribulose bisphosphate carboxylase small chain (RBCS) protein in vitro. BiFC results further confirmed that MeAHL19 interacted with RBCS in Nicotiana benthamiana mesophyll cells. Analysis of gene expression patterns showed that MeAHL19 was mainly expressed in roots, whereas RBCS was expressed at about the same level in roots, stems and leaves; MeAHL19 and RBCS responded to abiotic stress and exogenous hormone responses in cassava. This study provides a reference for further investigation on the biological function of MeAHL19 in stress responses of cassava.
[1] 蔡吉苗, 李超萍, 时涛, 等. 2010. 木薯炭疽病病原鉴定及其生物学特性研究[J]. 安徽农业科学, 38(10): 5435-5438. (Cai J M, Li C P, Shi T, et al.2010. Study on the pathogeny identification and biological characteristics of anthrancnose in cassava[J]. Journal of Anhui Agricultural Sciences, 38(10): 5435-5438.) [2] 丁丽雪, 李涛, 李植良, 等. 2016. 番茄AT-hook基因家族的鉴定及胁迫条件下的表达分析[J]. 植物遗传资源学报, 17(2): 303-315. (Ding L X, Li T, Li Z L, et al.2016. Genome-wide identification and express analysis oxidative stress of AT-hook gene family in tomato[J]. Journal of Plant Genetic Resources, 17(2): 303-315.) [3] 郭育强. 2017. 木薯中与MeCWINV6基因启动子互作的转录因子筛选及生物信息学分析[D]. 硕士学位论文, 导师: 胡新文, 郭建春, 海南大学, pp. 41. (Guo Y Q. 2017. Screening and bioinformatics analysis of transcription factor interacting with MeCWINV6 promoter in Manihot esculenta Crantz[D].Thesis for M.S., Hainan University, Supervisor: Hu X W, Guo J C, pp. 41.) [4] 卢昕, 李超萍, 时涛, 等. 2013. 国内木薯主产区细菌性枯萎病病原鉴定[J]. 广东农业科学, 40(21): 84-87. (Lu X, Li C P, Shi T, et al.Pathogen identification of cassava bacterial blight from several main cultivation area in China[J]. Guangdong Agricultural Sciences, 40(21): 84-87.) [5] 王惠君, 王文泉, 李文彬, 等. 2016. 木薯的抗寒性及北移栽培技术研究进展综述[J]. 热带作物学报, 37(07): 1437-1443. (Wang H J, Wang W Q, Li W B, et al.2016. Research progress of cold resistance and cultivation practice for cassava moving northward[J]. Chinese Journal of Tropical Crops, 37(07): 1437-1443.) [6] 王晓彤, 张建禹, 耿沙, 等 . 2022. 木薯MeAHL22基因的克隆及功能初步分析[J]. 分子植物育种, 20(05): 1443-1451. (Wang X T, Zhang J Y, Gen S, et al.2022. Cloning and functional analysis of MeAHL22 gene from cassava[J]. Molecular Plant Breeding, 20(05): 1443-1451.) [7] Bedbrook J R, Coen D M, Beaton A Ret al.1979. Location of the single gene for the large subunit of ribulosebisphosphate carboxylase on the maize chloroplast chromosome[J]. Journal of Biological Chemistry, 254(3): 905-910. [8] Bishop E H, Kumar R, Luo F, et al.2020. Genome-wide identification, expression profiling, and network analysis of AT-hook gene family in maize[J]. Genomics, 112(2): 1233-1244. [9] Dean C.1989. Structure, evolution, and regulation of RbcS genes in higher plants[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 40(1): 415-439. [10] Djabou A S M, Carvalho L, Li Q X, et al.2017. Cassava postharvest physiological deterioration: A complex phenomenon involving calcium signaling, reactive oxygen species and programmed cell death[J]. Acta Physiologiae Plantarum, 39(4): 91-100. [11] Figueroa N, Lodeyro A F, Carrillo N, et al.2021. Meta-analysis reveals key features of the improved drought tolerance of plants overexpressing NAC transcription factors[J]. Environmental and Experimental Botany, 186(6): 104449-104461. [12] Howden A J M, Stam R, Martinez Heredia V, et al.2017. Quantitative analysis of the tomato nuclear proteome during Phytophthora capsici infection unveils regulators of immunity[J]. New Phytologist, 215(1): 309-322. [13] Howeler R, Lutaladio N, Thomas G.2013. Save and Grow: Cassava, A Guide to Sustainable Production Intensification[M]. Food and Agriculture Organization of the Unite Nations. Rome. pp.1-19. [14] Jin Y, Luo Q, Tong H, et al.2011. An AT-hook gene is required for palea formation and floral organ number control in rice[J]. Developmental Biology, 359(2): 277-288. [15] Kim H B, Chang J O, Park Y C, et al.2011. Comprehensive analysis of AHL homologous genes encoding AT-hook motif nuclear localized protein in rice[J]. BMB Reports, 44(10): 680-685. [16] Lebot V.2020. Tropical Root and Tuber Crops: Cassava, Sweet Potato, Yams and Aroids[M]. Cambridge University press. Wallingford. pp. 1-13. [17] Lee K, Seo P J, Blazquez M A, et al.2017. Coordination of matrix attachment and ATP-dependent chromatin remodeling regulate auxin biosynthesis and Arabidopsis hypocotyl elongation[J]. PLOS ONE, 12(7): e0181804-0181822. [18] Lee Y K, Kim I J.2010. Modulation of fruit softening by antisense suppression of endo-β-1,4-glucanase in strawberry[J]. Molecular Breeding, 27(3): 375-383. [19] Legg J, Somado E A, Barker I, et al.2014. A global alliance declaring war on cassava viruses in Africa[J]. Food Security, 6(2): 231-248. [20] Legg J P, Owor B, Sseruwagi P, et al.2006. Cassava mosaic virus disease in east and central Africa: Epidemiology and management of a regional pandemic[J]. Advances in Virus Research, 67(1): 355-418. [21] Lim P O, Kim Y, Breeze E, et al.2007. Overexpression of a chromatin architecture-controlling AT-hook protein extends leaf longevity and increases the post-harvest storage life of plants[J]. Plant Journal for Cell & Molecular Biology, 52(6): 1140-1153. [22] Liu Y, Feng Z, Zhu W, et al.2021. Genome-wide identification and characterization of cysteine-rich receptor-like protein kinase genes in tomato and their expression profile in response to heat stress[J]. Diversity, 13(6): 258-275. [23] Lu H, Zou Y, Feng N.2010. Overexpression of AHL20 negatively regulates defenses in Arabidopsis[J]. Journal of Integrative Plant Biology, 52(9): 801-808. [24] Matsushita A, Furumoto T, Ishida S, et al.2007. AGF1, an AT-hook protein, is necessary for the negative feedback of AtGA3ox1 encoding GA 3-oxidase[J]. Plant Physiology, 143(3): 1152-1162. [25] Mhamdi A, van Breusegem F.2018. Reactive oxygen species in plant development[J]. Development, 145(15): 1-12. [26] Mergby D, Hanin M, Saidi M N.2021. The durum wheat NAC transcription factor TtNAC2A enhances drought stress tolerance in Arabidopsis[J]. Environmental and Experimental Botany, 186(6): 104439-104448. [27] Ng K-H, Yu H, Ito T.2009. AGAMOUS controls GIANT KILLER, a multifunctional chromatin modifier in reproductive organ patterning and differentiation[J]. PLoS Biology, 7(11): e1000251-1000267. [28] Okogbenin E, Setter T L, Ferguson M, et al.2013. Phenotypic approaches to drought in cassava: Review[J]. Frontiers in Physiology, 4(05): 93-107. [29] Okuda T, Matsuda Y, Yamanaka Aet al.1991. Abrupt increase in the level of hydrogen peroxide in leaves of winter wheat is caused by cold treatment[J]. Plant Physiology, 97(3): 1265-1267. [30] Rayapuram N, Jarad M, Alhoraibi H M, et al.2021. Chromatin phosphoproteomics unravels a function for AT-hook motif nuclear localized protein AHL13 in PAMP-triggered immunity[J].Proceedings of the National Academy of Sciences of the USA, 118(3): e2004670118-2004670129. [31] Schwarte S, Tiedemann R.2011. A gene duplication/loss event in the ribulose-1,5-bisphosphate-carboxylase/oxygenase (rubisco) small subunit gene family among accessions of Arabidopsis thaliana[J]. Molecular Biology and Evolution, 28(6): 1861-1876. [32] Širl M, Šnajdrová T, Gutiérrez-Alanís D, et al.2020. At-Hook motif nuclear localised protein 18 as a novel modulator of root system architecture[J]. International Journal of Molecular Sciences, 21(5): 1886-1904. [33] Street I H, Shah P K, Smith A Met al.2008. The AT-hook-containing proteins SOB3/AHL29 and ESC/AHL27 are negative modulators of hypocotyl growth in Arabidopsis[J]. The Plant Journal, 54(1): 1-14. [34] Tembo M, Mataa M, Legg J, et al.2017. Cassava mosaic disease: Incidence and yield performance of cassava cultivars in Zambia[J]. Journal of Plant Pathology, 99(3): 681-689. [35] Wang H Z, Leng X, Yang J, et al.2021a. Comprehensive analysis of AHL gene family and their expression under drought stress and ABA treatment in Populus trichocarpa[J]. PeerJ, 9: e10932-10956. [36] Wang M, Chen B, Zhou W, et al.2021b. Genome-wide identification and expression analysis of the AT-hook motif nuclear localized gene family in soybean[J]. BMC Genomics, 22(1): 361-386. [37] Wang Q, Guo C, Li Z, et al.2021c. Potato NAC transcription factor StNAC053 enhances salt and drought tolerance in transgenic Arabidopsis[J]. International Journal of Molecular Sciences, 22(5): 2568-2585. [38] Wang X, An Y, Qi Z, et al.2021d. PPR protein early chloroplast development 2 is essential for chloroplast development at the early stage of Arabidopsis development[J]. Plant Science, 308(7): 110908-110918. [39] Wang X W, An Y Q, Li Y, et al.2021e. A PPR protein ACM1 Is involved in chloroplast gene expression and early plastid development in Arabidopsis[J]. International Journal of Molecular Sciences, 22(5): 2512-2528. [40] Waszczak C, Carmody M, Kangasjarvi J.2018. Reactive oxygen species in plant signaling[J]. Annual Review of Plant Biology, 69(1): 209-228. [41] Wong M M, Bhaskara G B, Wen T N, et al.2019. Phosphoproteomics of Arabidopsis highly ABA-Induced1 identifies AT-hook-like 10 phosphorylation required for stress growth regulation[J]. Proceedings of the National Academy of Sciences of the USA, 116(6): 2354-2363. [42] Xu Y, Zong W, Hou X, et al.2015. OsARID3, an AT-rich interaction domain-containing protein, is required for shoot meristem development in rice[J]. The Plant Journal, 83(5): 806-817. [43] Yadeta K A, Hanemian M, Smit P, et al.2011. The Arabidopsis thaliana DNA-binding protein AHL19 mediates verticillium wilt resistance[J]. Molecular Plant-Microbe Interactions, 24(12): 1582-1591. [44] Yan P, Zeng Y, Shen W, et al.2020. Nimble cloning: A simple, versatile, and efficient system for standardized molecular cloning[J]. Frontiers in Bioengineering and Biotechnology, 7(1): 460-469. [45] Yuan G Q, Zou T, Zhang X, et al.2020. A rice GDSL esterase/lipase protein (GELP) is required for anther and pollen development[J]. Molecular Breeding, 40(9): 1-15. [46] Yun J, Kim Y S, Jung J H, et al.2012. The AT-hook motif-containing protein AHL22 regulates flowering initiation by modifying FLOWERING LOCUS T chromatin in Arabidopsis[J]. The Journal of Biological Chemistry, 287(19): 15307-15316. [47] Zhang B C, Zhang L J, Li F, et al.2017. Control of secondary cell wall patterning involves xylan deacetylation by a GDSL esterase[J]. Nature Plants, 3(3): 17017-17017. [48] Zhang H H, Wang M L, Li Y Q, et al.2020a. GDSL esterase/lipases OsGELP34 and OsGELP110/OsGELP115 are essential for rice pollen development[J]. Journal of Integrative Plant Biology, 62(10): 1574-1593. [49] Zhang L, Yang J, Guo X, et al.2020b. Overexpression of SikRbcs2 gene promotes chilling tolerance of tomato by improving photosynthetic enzyme activity, reducing oxidative damage, and stabilizing cell membrane structure[J]. Food Science and Nutrition, 8(7): 3479-3491. [50] Zhang X J, Yang G Y, Shi R, et al.2013. Arabidopsis cysteine-rich receptor-like kinase 45 functions in the responses to abscisic acid and abiotic stresses[J]. Plant Physiology Biochemistry, 67(1): 189-198. [51] Zhao J, Favero D S, Peng H, et al.2013. Arabidopsis thaliana AHL family modulates hypocotyl growth redundantly by interacting with each other via the PPC/DUF296 domain[J]. Proceedings of the National Academy of Sciences of the USA 110(48): 4688-4697. [52] Zhao L J, Lu Y J, Chen W, et al.2020. Genome-wide identification and analyses of the AHL gene family in cotton (Gossypium)[J]. BMC Genomics, 21(1): 69-82. [53] Zhou L G, Liu Z C, Liu Y H, et al.2016. A novel gene OsAHL1 improves both drought avoidance and drought tolerance in rice[J]. Scientific Reports, 6(1): 1-15.