Changes in Photoinhibition and Fatty Acid Composition in the Membrane of Chrysanthemum (Chrysanthemum morifolium) Leaves Under Low Temperature Stress
MIAO Run-Tian1,2, LI Hai-Yan1,2, ZHAO Peng-Fei1,2, HUANG Gan1,2, LI Yong-Hua1,2, LU Jiu-Xing1,2,*
1 School of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China; 2 Henan Provincial Engineering Research Center of Quality Flowers and Vegetables Seedling, Zhengzhou 450002, China
Abstract:Low temperature in winter and spring has become an important factor affecting the growth and development of chrysanthemum (Chrysanthemum morifolium). To explore the physiological mechanism of chrysanthemum leaves membrane lipid constituents to low temperature stress response, chrysanthemum variety 'Tangyujinqiu' was used to test the fatty acid composition in cell and thylakoid membrane and its correlation with fatty acids desaturase genes and chlorophyll fluorescence parameters, separately. The results showed in cell membrane that index of unsaturated fatty acid (IUFA) significantly increased with the decrease of temperature. The expression levels of Δ9 stearoyl acyl-carrier-protein desaturase genes (CmSAD), and fatty acid desaturase genes (CmFAD2 and CmFAD7) were not completely consistent with contents of fatty acids. In thylakoid membrane, the content of saturated fatty acids (palmitic acid (C16∶0), stearic acid (C18∶0)) decreased significantly, while the content of unsaturated fatty acids (oleic acid (C18∶1), linoleic acid (C18∶2), linolenic acid (C18∶3)) showed upward trend. Fatty acid desaturase genes regulated unsaturation fatty acid more directly in thylakoid membrane than in cell membrane. The IUFA of thylakoid membrane was significantly correlated with chlorophyll fluorescence parameters, indicated that the unsaturated fatty acids repressed photoinhibition by reducing the electron transfer on the PSⅡ acceptor side and increasing heat dissipation. The expression level of fatty acid desaturase genes were increased by low temperature stress in leaves, meanwhile, unsaturated fatty acid level in cell and thylakoid membrane was promoted by low temperature, and maintained the stability of the membrane, this might alleviate the damage caused by low temperature to photosystem to a certain extent. This study provides a theoretical basis for further exploring the relationship between changes in plant membrane lipid components and photoinhibition under low temperature stress.
苗润田, 李海燕, 赵鹏飞, 黄淦, 李永华, 逯久幸. 低温胁迫下菊花叶片光抑制与膜脂构成变化[J]. 农业生物技术学报, 2022, 30(2): 296-304.
MIAO Run-Tian, LI Hai-Yan, ZHAO Peng-Fei, HUANG Gan, LI Yong-Hua, LU Jiu-Xing. Changes in Photoinhibition and Fatty Acid Composition in the Membrane of Chrysanthemum (Chrysanthemum morifolium) Leaves Under Low Temperature Stress. 农业生物技术学报, 2022, 30(2): 296-304.
[1] 代玉华, 刘训言, 孟庆伟, 等. 2004. 低温弱光处理及恢复期间黄瓜叶片的光抑制与类囊体膜中脂肪酸组成的变化[J]. 植物生理学通讯, 40(01): 14-18. (Dai Y H, Liu X Y, Meng Q W, et al.2004. Changes of photoinhibition and fatty acid composition in thylakoid membrane of cucumber leaves during low temperature and weak light stress and the course of recovery[J]. Plant Physiology Journal, 40(01): 14-18.) [2] 董春娟, 曹宁, 尚庆茂. 2017. 外源水杨酸对低温胁迫下黄瓜幼苗根系脂肪酸不饱和度的影响[J]. 园艺学报, 44(7): 1319-1326. (Cao C J, Cao N, Shang Q M.2017. Effects of salicylic acid on fatty acid compositions in the roots of cucumber seedlings under low temperature[J]. Acta Horticulturae Sinica, 44(7): 1319-1326.) [3] 黄春颖, 黄有军, 吴建峰, 等. 2018. SAD和FAD家族基因调控山核桃不饱和脂肪酸组分配比[J]. 园艺学报, 45(2): 250-260. (Huang C Y,Huang Y J,Wu J F, et al.2018. SAD and FAD genes regulate the ratio of unsaturated fatty acid components in Carya cathayensis[J]. Acta Horticulturae Sinica, 45(2): 250-260.) [4] 李鹏民, 高辉远, Strasser R J.2005. 快速叶绿素荧光诱导动力学分析在光合作用研究中的应用[J]. 植物生理与分子生物学学报, 31(6): 559-566. (Li P M, Gao H Y, Strasser R J.2005. Application of the fast chlorophyll fluorescence induction dynamics analysis in photosynthesis study[J]. Physiology and Molecular Biology of Plants, 31(6): 559-566.) [5] 李双铭, 徐庆国, 杨勇, 等. 2019. 低温胁迫对结缕草抗氧化酶活性和脂肪酸含量的影响[J]. 草地学报, 27(04): 906-912. (Li S M, Xu Q G, Yang Y, et al.2019. Effects of low temperature stress on the antioxidant enzyme activities and fatty acid contents in zoysiagrass[J]. Acta Agrestia Sinica, 27(04): 906-912.) [6] 李永华, 史春会, 李永, 等. 2013. 低温下4种秋菊叶片和根系膜脂脂肪酸组分比较[J]. 植物生理学报, 49(05): 457-462. (Li Y H, Shi C H, Li Y, et al.2013. Comparison of membrane fatty acids components in leaf and root of four autumn chrysanthemum cultivars under low temperature[J]. Plant Physiology Journal, 49(05): 457-462.) [7] 李永华, 王翠丽, 李永, 等. 2015. 菊花脂肪酸脱饱和酶基因CmFAD7的克隆与表达分析[J]. 园艺学报, 42(1): 65-74. (Li Y H, Wang C L, Ly Y, et al.2015. Cloning and expression analysis of fatty acid desaturase gene CmFAD7 in chrysanthemum[J]. Acta Horticulturae Sinica, 42(1): 65-74.) [8] 聂林杰, 孙泽硕, 程祥飞, 等. 2020. 低温胁迫下菊花叶片不饱和脂肪酸质量分数对光系统Ⅱ功能的影响[J]. 东北林业大学学报, 48(11): 61-65. (Nie L J, Sun Z S, Cheng X F, et al.2020. Effect of unsaturated fatty acid on PSⅡ function in chrysanthemum (Dendranthema morifolium) leaves under low temperature stress[J]. Journal of Northeast Forestry University, 48(11): 61-65.) [9] 孙磊, 张成军, 陈国祥, 等. 2006. 光逆境下小麦旗叶类囊体膜特性的变化[J]. 湖北农业科学, (4): 420-423. (Sun L,Zhang C J, Chen G X, et al. 2006. Changes of thylakoid membrane characters in wheat flag leaf under light stress[J]. Hubei Agricultural Sciences, (04): 420-423.) [10] 孙晓琳. 2011. 番茄类囊体膜不饱和脂肪酸增多缓解低温下PSⅡ的光抑制[D]. 硕士学位论文, 山东农业大学, 导师: 赵世杰, pp. 53-57. (Sun X L.2011. The unsaturation of phosphatidylglycerol in thylakoid membrane alleviates PSⅡ photoinhibition under chilling stress[D]. Thesis for M.S., Shandong Agricultural University, Supervisor: Zhao S J, pp. 53-57.) [11] 王翠丽, 李永, 崔洋, 等. 2014. 9个秋菊品种叶片脂肪酸组成及其抗寒性评价[J]. 西北农林科技大学学报(自然科学版), 42(11): 61-68. (Wang C L,Li Y,Cui Y, et al.2014. Fatty acids components and cold resistance of 9 autumn chrysanthemum cultivars[J]. Journal of Northwest A & F University (Natural Science Edition), 42(11): 61-68.) [12] 王萍, 张成军, 陈国祥, 等. 2006. 低温对水稻幼苗类囊体膜脂肪酸组分和膜脂过氧化的影响[J]. 中国水稻科学, (4): 401-405. (Wang P, Zhang C J, Chen G Y, et al. 2006. Effects of low temperature on fatty acid composition of thylakoid membranes and lipid peroxidation in leaves of rice seedlings[J]. Chinese Journal of Rice Science, (4): 401-405.) [13] 王玉萍, 郜春晓, 王盛祥, 等. 2020. 低温弱光胁迫下芸豆叶片光抑制与类囊体膜脂构成变化[J]. 草业学报, 29(8): 116-125. (Wang Y P, Gao C X, Wang S X, et al.2020. Changes in photoinhibition and fatty acid composition in the thylakoid membrane of kidney bean leaves under low temperature and weak light stress[J]. Acta Prataculturae Sinica, 29(8): 116-125.) [14] 许婷婷, 张婷婷, 姚文思, 等. 2020. 热处理对低温胁迫下黄瓜活性氧代谢和膜脂组分的影响[J]. 核农学报, 34(1): 85-93. (Xu T T, Zhang T T, Yao W S, et al.2020. Effect of heat treatment on reactive oxygen species metabolism and membrane lipid constituents of cucumber fruit under low temperature stress[J]. Journal of Nuclear Agricultural Sciences, 34(1): 85-93.) [15] 赵鹏飞, 聂林杰, 王磊, 等. 2019. 低温胁迫对切花菊叶片光化学反应参数的影响[J]. 河南农业大学学报, 53(02): 193-199. (Zhao P F, Nie L J, Wang L, et al.2019. Effects of low temperature stress on photochemical reaction parameters of chrysanthemum leaves[J]. Journal of Henan Agricultural University, 53(02): 193-199.) [16] 赵鹏飞. 2019. 低温胁迫下菊花叶片光系统特性等生理指标分析及相关基因表达[D]. 硕士学位论文, 河南农业大学, 导师: 李永华, pp. 42-44. (Zhao P F.2019. Analysis of photosystem characteristics, physiological indicators and expression of related genes under low temperature stress in chrysanthemum leaves[D]. Thesis for M.S., Henan Agriculture University, Supervisor: Li Y H, pp. 42-44.) [17] Byfield G E, Upchurch R G.2007. Effect of temperature on delta-9 stearoyl-ACP and microsomal omega-6 desaturase gene expression and fatty acid content in developing soybean seeds[J]. Crop Science, 47(4): 1698-1704. [18] Dar A A, Choudhury A R, Kancharla P K, et al.2017. The FAD2 gene in plants: Occurrence, regulation, and role[J]. Frontiers in Plant Science, 8: 179. [19] Dunanhay T G, Staehelin L A, Seibert M, et al.1984. Structural, biochemical and biophysical characterization of four oxygen-evolving PhotosystemⅡ preparations from spinach[J]. Biochimica et Biophysica Acta, 764(2): 179-193. [20] Gombos Z, Wada H, Murata N.1994. The recovery of photosynthesis from low-temperature photoinhibition is accelerated by the unsaturation of membrane lipids: A mechanism of chilling tolerance[J]. Proceedings of the National Academy of Sciences of the USA, 91(19): 8787-8791. [21] Knutzon D S, Thompson G A, Radlke S E, et al.1992. Modification of Brassica seed oil by antisense expression of a stearoyl-acyl carrier protein desaturase gene[J]. National Academy of Sciences, 89(7): 2624-2628. [22] Murata N, Takahashi S, Nishiyama Y, et al.2007. Photoinhibition of photosystemⅡunder environmental stress[J]. Biochimica et Biophysica Acta, 1767(8): 414-421. [23] Peng D, Zhou B, Jiang Y Q, et al.2018. Enhancing freezing tolerance of Brassica napus L. by overexpression of a stearoyl-acyl carrier protein desaturase gene (SAD) from Sapium sebiferum (L.) Roxb.[J]. Plant Science, 13(4): 871-875. [24] Ramesh A M, Kesarl V, Rangan L.2014. Characterization of a stearoyl-acyl carrier protein desaturase gene from potential biofuel plant Pongamia pinnata L.[J] Gene, 542(2): 113-121. [25] Román Á, Andreu V, Hernández M L, et al.2012. Contribution of the different omega-3 fatty acid desaturase genes to the cold response in soybean[J]. Journal of Experimental Botany, 63(13): 4973-4982. [26] Vijayan P, Bowse J.2002. Photoinhibition in mutants of Arabidopsis deficient in thylakoid unsaturation[J]. Plant Physiology, 129(2): 876-885. [27] Yehuda S, Rabinovitz S, Carasso R L, et al.2002. The role of polyunsaturated fatty acids in restoring the aging neuronal membrane[J]. Neurobiology of Aging, 23(5): 843-853. [28] Zhou Z, Wang M J, Zhao S T, et al.2010. Changes in freezing tolerance in hybrid poplar caused by up-and down-regulation of PtFAD2 gene expression[J]. Transgenic Research, 19(4): 647-654.