Screening, Identification and Biological Characteristics of An Enzyme-producing Bacillus Strain Isolated from Siniperca chuatsi
WANG Jia-Chuan1,2, ZHANG De-Feng2, WANG Ya-Jun2,*, LIANG Chi-Qiang3, XIONG Xiu-Ling2, SHI Cun-Bin2,*, WANG Fang2, LIU Li-Juan1,2
1 Aquaculture Institute, Tianjin Agricultural University, Tianjin 300384, China;
2 Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences/Key Laboratory of Fishery Drug Development, Ministry of Agriculture/Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Guangzhou 510380, China;
3 Integrated Agricultural Service Center of Qingcheng District, Qingyuan 511500, China
Abstract:Mandarin fish (Siniperca chuatsi) has low utilization rate of artificial feed and high breeding cost. In present study, in order to improve the palatability and utilization rate of artificial feed for mandarin fish, Bacillus spp. with enzyme producing ability was screened from the intestine of healthy mandarin fish. The intact intestines of 16 healthy mandarin fish were selected aseptically, and the homogenate was diluted in a stepwise manner to screen the strains producing amylase, protease and cellulase by the plate coating method. After comprehensively analyzing the enzyme-producing ability of the strains, a strain GY65 with strong enzyme-producing ability was selected. The strain GY65 was determined to be Bacillus velezensis according to morphological observation, physiological and biochemical characteristics analysis and genes evolution analysis of 16S rRNA and gyrA. The growth characteristics showed that the optimal pH of strain GY65 was 7, and the growth of strain GY65 was promoted by the low concentration of Mg2+, Ca2+, Mn2+ and Fe3+. Biosafety test showed that the bacteria was sensitive to most antibiotics; and non-pathogenic to mandarin fish, snakehead (Channa argus), nile tilapia (Oreochromis niloticus) and zebra fish (Danio rerio). In conclusion, the strain GY65 has good biological safety and the potential as a feed additive for mandarin fish. This study provides a reference for improving the utilization rate of artificial feed for mandarin fish.
[1] 布坎南R E, 吉本斯 N E. 1984. 伯杰细菌鉴定手册[M]. 北京: 科学出版社, pp 729-742.
(Buchanan R E, Gibbons N E.1984. Berger Handbook for Bacterial Identification[M]. Science Press, Beijing, China, pp. 729-742.)
[2] 蔡高磊, 张凡, 欧阳友香, 等. 2018. 贝莱斯芽胞杆菌(Bacillus velezensis)研究进展[J]. 北方园艺, 06(12): 162-167.
(Cai G L, Zhang F, Ouyang Y X, et al.2018. Research progress on Bacillus velezensis[J]. Northern Horticulture, 06(12) :162-167.)
[3] 柴玉龙, 尚伟, 姜军坡, 等. 2012. 兔源益生菌Tu-569菌株鉴定与其胞外产抑菌物性质分析[J]. 中国抗生素杂志, 37(11): 821-826.
(Chai Y L, Shang W, Jiang J P, et al.Identification of probiotics strain Tu-569 from rabbit cecum and property analysis of its extracellular antibacterial product[J]. Chinese Journal of Antibiotics, 37(11) : 821-826.)
[4] 单红艳, 丁鹏, 贺喜. 2019. 芽胞杆菌在猪鸡日粮中的应用研究进展[J]. 湖南饲料, 01(03): 38-44.
(Shan H Y, Ding P, He X.2019. Progress in the application of Bacillus spp. in pig and chicken diet[J]. Hunan Feed, 01(03): 38-44.)
[5] 东秀珠, 蔡妙英. 2001. 常见细菌系统鉴定手册[M]. 北京:科学出版社, pp. 729-759.
(Dong X Z, Cai M Y.2001. Handbook of Systematic Identification of Common Bacteria [M]. Beijing: Science Press, pp. 729-759.)
[6] 李燕, 李永强, 李建忠, 等. 2016. 配合饲料完全替代鲜活饵料对翘嘴鳜生长、体成分及消化能力的影响[J]. 水产科技情报, 43(03): 164-168.
(Li Y, Li Y Q, Li J Z, et al.Effect of compound feed completely replacing live feed on Siniperca chuatsi growth composition and digestive ability[J]. Fisheries Science and Technology Information, 43(03): 164-168.)
[7] 陶荣霞. 2012. 17株芽胞杆菌产酶特性及益生特性的研究[D]. 硕士学位论文, 华中农业大学, 导师:梁运祥, pp. 1-5.
(Tao R X.2012. Study on characteristics of enzyme production and probiotics of 17 Bacillus strains[D]. Thesis for M.S., Huazhong Agricultural University, Supervisor: Liang Y X, pp. 1-5.)
[8] 王杰, 梁旭方, 李姣, 等. 2018. 菜粕替代鱼粉对翘嘴鳜肠道吸收和氨基酸代谢的影响[J]. 华中农业大学学报, 37(04): 93-101.
(Wang J, Liang X F, Li J, et al.2018. Effects of substituting fish meal with rapeseed meal on intestinal absorption and amino acids metabolism in Chinese perch (Siniperca chuatsi)[J]. Journal of Huazhong Agricultural University, 37(04): 93-101.)
[9] 王瑞旋, 冯娟, 耿玉静, 等. 2010. 水产细菌耐药性的最新研究概况[J]. 海洋环境科学, 29(05): 770-776.
(Wang R X, Feng J, Geng Y J, et al.2010. Studies on the drug resistance of aquatic bacteria[J]. Marine Environmental Science, 29(05): 770-776.)
[10] 王金燕, 李彬, 王印庚, 等. 2018. 刺参养殖池塘一株贝莱斯芽胞杆菌的分离及其生理特性[J]. 中国水产科学, 25(03): 567-575.
(Wang J Y, Li B, Wang Y G, et al.2018. Screening and characteristic analysis of Bacillus velezensis from sea cucumber (Apostichopus japonicus) ponds[J]. Chinese Fishery Science, 25(03): 567-575.)
[11] 王雪梅, 胡江春, 王书锦. 2009. 深海芽胞杆菌B1394的鉴定及其产蛋白酶酶学性质[J]. 吉林农业大学学报, 31(02): 143-147.
(Wang X M, Hu J C, Wang S J.2009. Identification of the protease-producing strain B1394 and characterization of the protease[J]. Journal of Jilin Agricultural University, 31(02): 143-147.)
[12] 王吉桥, 唐黎, 许重, 等. 2007. 温度、pH和金属离子对仿刺参蛋白酶活力影响的研究[J]. 海洋科学, 31(11): 14-18.
(Wang J Q, Tang L, Xu Z, et al.2007. Effect of temperature, pH value and metal ions on protease activity in the digenstive tract from sea cucumber (Apostichopus japonicus)[J]. Marine Science, 31(11): 14-18.)
[13] 王琰, 高四合, 单建杰, 等. 2018. 半滑舌鳎源蜡样芽胞杆菌毒性检测及药敏试验[J]. 水产科学, 37(1): 59-65.
(Wang Y, Gao S H, Shan J J, et al.2018. Virulence and drug susceptibility of a pathogenic bacterium from half-smmoth[J]. Fisheries Science, 37(1): 59-65.)
[14] 许毅, 周岩民, 王恬. 2003. 饲料加工工艺对酶制剂活性的影响[J]. 粮食与饲料工业, 29(08): 22-24.
(Xu Y, Zhou Y M, Wang T.2003. Influence of feed processing technology on enzyme preparation activity[J]. Cereal and Feed Industry, 29(08): 22-24.)
[15] 谢进金, 蒋娜红, 洪绿萍, 等. 2007. 尼罗罗非鱼淀粉酶性质的初步研究[J]. 淡水渔业, 37(02): 34-37.
(Xie J J, Jiang N H, Hong L P, et al.2007. Preliminary study on properties of amylase from Nile Tilapia (Oreochromis niloticus)[J]. Freshwater Fisheries, 37(02): 34-37.)
[16] 姚露燕, 张水华, 曹昱, 等. 2008. 金属离子浓度对枯草芽胞杆菌芽孢率的影响[J]. 现代食品科技, 24(08): 38-40.
(Yao L Y, Zhang S H, Cao Y, et al.2008. Effect of metal ion concentration on the sporulation efficiency of Bacillus subtilis[J]. Modern Food Science and Technology, 24(08): 38-40.)
[17] 张德强, 关晓燕. 2016. 枯草芽胞杆菌B2的生长及其对仿刺参的益生特性[J]. 水产科学, 35(03): 234-238.
(Zhang D Q, Guan X Y.2016. Growth and probiotic characteristics of Bacillus subtilis B2 in sea cucumber Apostichopus japonicus[J]. Fisheries Science, 35(03): 234-238.)
[18] Abriouel H, Franz C, Omar N, et al.2011. Diversity and applications of Bacillus bacteriocins[J]. FEMS Microbiology Reviews, 35(01): 201-232.
[19] Buruiană C T, Profir A G, Vizireanu C.2014. Effects of probiotic Bacillus species in aquaculture - An overview[J]. Food Technology, 38(02): 9-17.
[20] Cha J H, Rahimnejad S, Yang S Y, et al.2013. Evaluation of Bacillus spp. as dietary additives on growth performance, innate immunity and disease resistance of olive flounder (Paralichthys olivaceus) against Streptococcus iniae and as water additives[J]. Aquaculture, 402-403: 50-57.
[21] Dunlap C A, Kim S J, Kwon S W, et al.2016. Bacillus velezensis is not a later heterotypic synonym of Bacillus amyloliquefaciens; Bacillus methylotrophicus, Bacillus amyloliquefaciens subsp. plantarum and 'Bacillus oryzicola' are later heterotypic synonyms of Bacillus velezensis based on phylogenomics[J]. International Journal of Systematic and Evolutionary Microbiology, 66(03): 1212-1217.
[22] Dawood M A O, Koshio S, Ishikawa, et al.2016. Probiotics as an environment-friendly approach to enhance red sea bream, Pagrus major growth, immune response and oxidative status[J]. Fish and Shellfish Immunology, 57: 170-178.
[23] Fan B, Blom J, Klenk H P, et al.2017. Bacillus amyloliquefaciens, Bacillus velezensis, and Bacillus siamensis form an operational group B. amyloliquefaciens within the B. subtilis species complex[J]. Frontiers in Microbiology, 8(22): 1-15.
[24] Fan Y, Liu L T, Zhao L H, et al.2018. Influence of Bacillus subtilis ANSB060 on growth, digestive enzyme and aflatoxin residue in Yellow River carp fed diets contaminated with aflatoxin B1[J]. Food and Chemical Toxicology, 113: 108-114.
[25] Fei H, Lin G D, Zheng C C, et al.2018. Effects of Bacillus amyloliquefaciens and yarrowia lipolytica lipase 2 on imm unology and growth performance of hybrid sturgeon[J]. Fish and Shellfish Immunology, 82: 250-257.
[26] Gao X Y, Liu Y, Miao L L, et al.2017. Characterization and mechanism of anti-Aeromonas salmonicida activity of a marine probiotic strain, Bacillus velezensis V4[J]. Applied Microbiology and Biotechnology, 101: 3759-3768.
[27] Hassaan S M, Soltan M. A.2016. Evaluation of essential oil of fennel and garlic separately or combined with Bacillus licheniformis on the growth, feeding behaviour, hemato-biochemical indices of Oreochromis niloticus (L.) Fry[J]. Journal of Aquaculture Research and Development, 07(04): 1-8.
[28] Kuebutornye F K A, Abarike E D, Lu Y S.2019. A review on the application of Bacillus as probiotics in aquaculture[J]. Fish and Shellfish Immunology, 87: 820-828.
[29] Kavitha M, Manickam R, Pachiappan P.2018. Evaluation of probiotic potential of Bacillus spp. isolated from the digestive tract of freshwater fish Labeo calbasu[J]. Aquaculture Reports, 11: 59-69.
[30] Lakshmanan R, Soundarapandian P.2008. Effect of commercial probiotics on large scale culture of black tiger shrimp Penaeus monodon (Fabricius)[J]. Research Journal of Microbiology, 03(03): 198-203.
[31] Martinez F, Fernandez V, Roca S, et al.2008. A pure culture of strain AH2 of the Bacillus velezensis species and a product for the biological control of phytopathogenic fungi. Europe, EP2138044 B1[P].
[32] Ratchanu M, Kulwadee K, Sompong D, et al.2017. Evaluation of probiotic Bacillus aerius B81e isolated from healthy hybrid catfish on growth, disease resistance and innate immunity of Pla-mong Pangasius bocourti[J]. Fish and Shellfish Immunology, 73: 1-10.
[33] Reda R M, Selim K M.2015. Evaluation of Bacillus amyloliquefacienson the growth performance, intestinal morphology, hematology and body composition of Nile tilapia (Oreochromis niloticus)[J]. Aquaculture International, 23: 203-217.
[34] Ruiz-Garcia C, Bejar V, Martınez-Checa F, et al.2005. Bacillus velezensis sp. nov., a surfactant-producing bacterium isolated from the river Velez in Malaga, southern Spain[J]. International Journal of Systematic and Evolutionnary Microbiology, 55(01): 191-195.
[35] Tan Y H, Chen S W, Hu S Y.2019. Improvements in the growth performance, immunity, disease resistance, and gut microbiota by the probiotic Rummeliibacillus stabekisii in Nile tilapia (Oreochromis niloticus)[J]. Fish and Shellfish Immunology, 92: 265-275.
[36] Wu Z X, Feng X, Xie L L, et al.2012. Effect of probiotic Bacillus subtilis Ch9 for grass carp, Ctenopharyngodon idella (Valenciennes, 1844), on growth performance, digestive enzyme activities and intestinal microflora[J]. Journal of Applied Ichthyology, 28(05): 721-727.
[37] Yokota A, Sasajima K.1981. Derepressed syntheses of sporulation marker enzymes in a Bacillus species mutant[J]. Agricultural and Biological Chemistry, 45(11): 2417-2423.
[38] Yi Y L, Zhang Z H, Zhao F, et al.2018. Probiotic potential of Bacillus velezensis JW: Antimicrobial activity against fish pathogenic bacteria and immune enhancement effects on Carassius auratus[J]. Fish Shellfish Immunology, 78: 322-330.
[39] Zhang D F, Gao Y X, Ke X L, et al.2019. Bacillus velezensis LF01: In vitro antimicrobial activity against fish pathogens, growth performance enhancement, and disease resistance against streptococcosis in Nile tilapia (Oreochromis niloticus)[J]. Applied Microbiology and Biotechnology, 103: 9023-9035.
基金项目:国家肉牛牦牛产业技术体系专项(CARS-37);河南省肉牛产业技术体系; S201910712062; X201910712408)