Cloning, Subcellular Localization and Expression Analysis of DeTIP2;1 Gene from Dontostemon elegans
ZOU Li-Yuan, MA Wei, LI Jin-Yu, GE Feng-Wei*
College of Life Science, Xinjiang Normal University/Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology/Key Laboratory of Special Environment Biodiversity Application and Regulation in Xinjiang/Key Laboratory of Plant Stress Biology in Arid Land/The Key Discipline Biology, Xinjiang Normal University, Urumqi 830054, China
Abstract:AQPs (aquaporins) play an important role in plant development and abiotic stress resistance. In this study, DeTIP2;1, the only up-regulated gene of AQPs family, was screened from drought transcriptome data of Xinjiang xerophyte Dontostemon elegans. Cloning the full-length sequence, bioinformatics analysis, expression analysis and subcellular localization were carried out. :The results showed that the total length of CDS was 750 bp, encoding 249 amino acids, with a molecular mass of 24.92 kD and a theoretical isoelectric point of 5.30, and contained 2 highly conserved domain of asparagine-proline-alanine (NPA) motifs.. Both drought and salt stress could affect the expression of DeTIP2;1, and the expression was tissue specific. Subcellular localization showed that DeTIP2;1 was located in tonoplast. The above results showed that DeTIP2;1 may be involved in water absorption and transportation in the root of D. elegans. This study provides data supports for the mining and screening of functional genes of xerophytic resources in arid areas.
邹丽媛, 马薇, 李金玉, 葛风伟. 扭果花旗杆DeTIP2;1基因的克隆、亚细胞定位和表达分析[J]. 农业生物技术学报, 2021, 29(12): 2279-2288.
ZOU Li-Yuan, MA Wei, LI Jin-Yu, GE Feng-Wei. Cloning, Subcellular Localization and Expression Analysis of DeTIP2;1 Gene from Dontostemon elegans. 农业生物技术学报, 2021, 29(12): 2279-2288.
[1] 江林娟, 陈春华, 颜旭, 等. 2018. 植物水通道蛋白的干旱应答机制研究进展[J].广西植物, 38(05): 672-680.
(Jiang L J, Chen C H, Yan X, et al.2018. Research progress on responsive mechanism of aquaporins to drought stress in plants[J]. Guihaia, 38(05): 130-138.)
[2] 马薇, 李艳红, 赵惠新, 等. 2020. NaCl胁迫对扭果花旗杆幼苗生理特性和染色体行为的影响[J].分子植物育种, 18(10): 3395-3401.
(Ma W, Li Y H, Zhao H X, et al.2021. Effects of NaCl stress on physiological characteristics and chromosomal behavior of Dontostemon elegans Maxim seedlings[J]. Molecular Plant Breeding, 18(10): 3395-3401.)
[3] 唐海. 2018. 胡杨中液泡膜水通道蛋白PeTIP1;2基因功能及其启动子研究[D]. 硕士毕业论文,西南科技大学, 导师: 姚银安, pp. 53.
(Tang H.2018. Function studies on PeTIP1;2 gene and its promoter effects of tonoplast aquaporin in Populus euphratica[D]. Thesis for M.S., Southwest University of Science and Technology, Supervisor: Yao Y A. pp. 53.)
[4] 徐德, 徐建俊, 李彪, 等. 2019. 植物水通道蛋白研究进展[J].分子植物育种, 17(14): 4674-4678.
( Xu D, Xu J J, Li B, et al.2019. Research advances for plant aquaporins[J]. Molecular Plant Breeding, 17(14): 4674-4678.)
[5] 徐登安, 赵纯钦, 张赤红, 等. 2015. 大麦水孔蛋白基因HvTIP2;1及其启动子的表达特性分析[J].中国生物工程杂志, 35(07):15-21.
(Xu D A, Zhao C Q, Zhang C H, et al.2015. Expression patterns of a root-specific barley aquaporin gene HvTIP2;1 and promoter[J]. China Biotechnology, 35(07): 15-21. )
[6] 岳川, 曹红利, 王赞, 等. 2018. 茶树水通道蛋白基因的克隆与表达分析[J]. 西北植物学报, 038(008): 1419-1427.
(Yue C, Cao H L, Wang Z, et al.2018. Cloning and expression analysis of aquaporin protein genes in tea plant (Camellia sinensis)[J]. Acta Botanica Boreali-Occidentalia Sinica, 038(008): 1419-1427.)
[7] 曾黎明, 曾坚. 2020.水通道蛋白在植物抗逆中的功能及调控研究进展[J].热带农业科学,40(07): 59-65.
(Ceng L M, Ceng J.2020. Research progress on the function and regulation of aquaporin in plant response to stress[J]. Chinese Journal of Tropical Agriculture, 40(07): 59-65.)
[8] 邹丽媛, 马薇, 葛风伟. 2021. PEG胁迫对扭果花旗杆幼苗生理特性和染色体行为的影响[J]. 分子植物育种, 19(14): 4812-4819.
(Zou L Y, Ma W, Ge F W.2021. Effect of PEG stress on physiological characteristics and chromosomal behavior of Dontostemon elegans Maxim seedlings[J]. Molecular Plant Breeding, 19(14): 4812-4819.)
[9] Alexandersson E, Fraysse L, Sjövall-Larsen S, et al.2005. Whole gene family expression and drought stress regulation of aquaporins[J]. Plant Molecular Biology, 59(3):469-484.
[10] Bezerra-Neto J P, Araújo F C, Ferreira-Neto J R C, et al.2019. Plant aquaporins: Diversity, evolution and biotechnological applications[J]. Current Protein and Peptide Science, 20(4): 368-395.
[11] Claire R D, Julien P, Fabienne T F, et al.2015. Short-term response to waterlogging in Quercus petraea and Quercus robur: A study of the root hydraulic responses and the transcriptional pattern of aquaporins[J]. Plant Physiology and Biochemistry, 97(2015): 323-330.
[12] Ge F W, Tao P, Zhang Y, et al.2014. Characterization of AQP gene expressions in Brassica napus during seed germination and in response to abiotic stresses[J], Biologia Plantarum, 58(2): 274-282.
[13] German D A, Chen W L, Smirnov S, et al.2012. Plant genera and species new to China recently found in northwest Xinjiang[J]. Nordic Journal of Botany, 30(1): 61-69.
[14] Lei D, Norbert U, Ralf K, et al.2019. Aquaporin PIP2;1 affects water transport and root growth in rice (Oryza sativa L.)[J]. Plant Physiology Biochemistry, 139(2019): 152-160.
[15] Li J T, Sun G Y, Liu Y Z, et al.2015. AcPIP2, a plasma membrane intrinsic protein from halophyte Atriplex canescens, enhances plant growth rate and abiotic stress tolerance when overexpressed in Arabidopsis thaliana[J]. Plant Cell Reports, 34(8): 1401-1415.
[16] Li R, Wang JF, Li ST, et al.2016. Plasma membrane intrinsic proteins SlPIP2;1, SlPIP2;7 and SlPIP2;5 conferring enhanced drought stress tolerance in tomato[J].Nature, 6: 31814.
[17] Li Z, Hou J R, Zhang Y, et al.2020. Spermine regulates water balance associated with Ca2+-dependent aquaporin (TrTIP2-1, TrTIP2-2 and TrPIP2-7) expression in plants under water stress[J], Plant and Cell Physiology, 61(9): 1576-1589.
[18] Lian H L, Yu X, Lane D, et al.2006. Upland rice and lowland rice exhibited different PIP expression under water deficit and ABA treatment[J]. Cell Research,16(7): 651-660.
[19] Lindahl V, Gourdon P, Andersson M, et al.2018. Permeability and ammonia selectivity in aquaporin TIP2;1: linking structure to function[J]. Nature, 8(1): 2413-2421.
[20] Martins C, Neves D M, Cidade L C, et al.2017. Expression of the citrus CsTIP2;1 gene improves tobacco plant growth, antioxidant capacity and physiological adaptation under stress conditions[J]. Planta, 245(5): 951-963.
[21] Olivier P, Colette T R, Alexandre G, et al.2010. A PIP1 aquaporin contributes to hydrostatic pressure-induced water transport in both the root and rosette of Arabidopsis[J]. Plant Physiology, 152(3): 1418-1430.
[22] Papilla R, Vaziri M, Zwiazek J.2018. Regulation of aquaporins in plants under stress[J]. Biological Research, 51(1): 4.
[23] Roshan K S, Rupesh D, Mehanathan Met al.2020. Versatile roles of aquaporin in physiological processes and stress tolerance in plants[J]. Plant Physiology and Biochemistry, 149(2020): 178-189.
[24] Schrader J, Unsicker S B, Bhattacharya Set al.2017. Growth form rather than phylogenetic relationship predicts broad volatile emission patterns in the Brassicaceae[J]. Plant Systematics and Evolution, 303(5): 653-662.
[25] Španiel S, Kempa M, Salmerón-Sánchez E, et al.2015. AlyBase: Database of names, chromosome numbers, and ploidy levels of Alysseae (Brassicaceae), with a new generic concept of the tribe[J]. Plant Systematics and Evolution, 301(10): 2463-2491.
[26] Wang R R, Wang M, Chen K H, et al.2018. Exploring the roles of aquaporins in plant-microbe interactions[J]. Cells, 7(12): 267.
[27] Xu Y, Hu W, Liu J H, Zhang J B, et al.2014. A banana aquaporin gene, MaPIP1;1, is involved in tolerance to drought and salt stresses[J]. BMC plant biology, 14(1): 59.