Structure, Classification, Evolution and Function of Plant WRKY Transcription Factors
REN Yong-Juan, WANG Dong-Jiao, SU Ya-Chun, WANG Ling, ZHANG Xu, SU Wei-Hua, QUE You-Xiong*
Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University/Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
Abstract:WRKY named for its special heptapeptide conserved sequence WRKYGOK, is one of the largest families of plant-specific transcription factors (TFs). It is widely involved in the response of plants to biotic, abiotic and hormonal stresses. WRKY TFs mainly regulate the expression of target genes by specifically binding cis-acting elements (T)TGAC(C/T) (W-box) of the promoters of target genes, participate in plant signaling pathways in response to different biotic, abiotic and hormonal stresses, and interact with multiple proteins to achieve their functions in different signal transduction pathways. In this review, the structure, classification, origin and evolution of WRKY TFs and its function and regulatory mechanisms in response to biotic, abiotic and hormonal signal were described, which aims to systematically summarize research progress of WRKY TFs in plants. This review provides relevant researchers with an in-depth understanding of WRKY TFs and the molecular mechanism how it mediates to improve plant resistance, and also provides a useful reference for crop genetic improvement.
任永娟, 王东姣, 苏亚春, 王玲, 张旭, 苏炜华, 阙友雄. 植物WRKY转录因子:结构、分类、进化和功能[J]. 农业生物技术学报, 2021, 29(1): 105-124.
REN Yong-Juan, WANG Dong-Jiao, SU Ya-Chun, WANG Ling, ZHANG Xu, SU Wei-Hua, QUE You-Xiong. Structure, Classification, Evolution and Function of Plant WRKY Transcription Factors. 农业生物技术学报, 2021, 29(1): 105-124.
[1] 李琪, 李翠, 王琛, 等. 2019a. 甘蓝型油菜转录因子WRKY72的基因克隆、表达分析及互作蛋白鉴定[J].农业生物技术学报, 27(5): 761-772. (Li Q, Li C, Wang C, et al.2019. Gene cloning, expression analysis and identification of interacting proteins of transcription factor WRKY72 in oilseed rape (Brassica napus)[J]. Journal of Agricultural Biotechnology, 27(5): 761-772.) [2] 李琪, 李烨, 牛芳芳, 等. 2019b. 拟南芥转录因子基因WRKY72的特性分析及其抗逆功能鉴定[J].农业生物技术学报, 27(2): 191-203. (Li Q, Li Y, Niu F F, et al.2019. Characterization and stress-resistance functional identification of transcription factor gene WRKY72 in Arabidopsis thaliana[J]. Journal of Agricultural Biotechnology, 27(2): 191-203.) [3] 李田, 孙景宽, 刘京涛. 2015. 植物转录因子家族在耐盐抗旱调控网络中的作用[J].生命科学, 27(2): 217-227. (Li T, Sun J K, Liu J T.2015. Role of different transcription factor families in the regulatory networks of drought and salinity tolerance in plants[J]. Chinese Bulletin of Life Sciences, 27(2): 217-227.) [4] 王玲, 刘峰, 戴明剑, 等. 2018. 甘蔗ScWRKY4基因的克隆与表达特性分析[J].作物学报, 44(9): 1367-1379. (Wang L, Liu F, Dai M J, et al.2018. Cloning and expression characteristic analysis of ScWRKY4 gene in sugarcane[J]. Acta Agronomica Sinica, 44(9): 1367-1379.) [5] 王庆竹, 尚先文, 汤纬玮, 等. 2019. 马尾松PmWRKY164基因的克隆及耐低磷功能分析[J].农业生物技术学报, 27(06): 1016-1024. (Wang Q Z, Shang X W, Tang W W, et al.2019. Cloning and low phosphorus tolerance function analysis of PmWRKY164 from Pinus massoniana[J]. Journal of Agricultural Biotechnology, 27(6): 1016-1024.) [6] 张旭, 凌辉, 刘峰, 等. 2018.一个甘蔗Ⅱd类WRKY转录因子基因的克隆和表达分析[J].中国农业科学, 51(23): 4409-4423. (Zhang X, Ling H, Liu F, et al.2018. Cloning and expression analysis of a Ⅱd sub-group WRKY transcription factor gene from sugarcane[J]. Scientia Agricultura Sinica, 51(23): 4409-4423.) [7] Abeysinghe J K, Lam K M, Ng Danny W K. 2019. Differential regulation and interaction of homoeologous WRKY18 and WRKY40 in Arabidopsis allotetraploids and biotic stress responses[J]. The Plant Journal, 2019, 97: 352-367. [8] Agarwal P, Reddy M, Chikara J.2011. WRKY: Its structure, evolutionary relationship, DNA-binding selectivity, role in stress tolerance and development of plants[J]. Molecular Biology Reports, 38(6): 3883-3896. [9] Ali M A, Azeem F, Nawaz M A, et al.2018. Transcription factors WRKY11 and WRKY17 are involved in abiotic stress responses in Arabidopsis[J]. Journal of Plant Physiology, 226: 12-21. [10] Babitha K, Ramu S, Pruthvi V, et al.2013. Co-expression of AtbHLH17 and AtWRKY28 confers resistance to abiotic stress in Arabidopsis[J]. Transgenic Research, 22(2): 327-341. [11] Bakshi M, Oelmüller R.2014. WRKY transcription factors: Jack of many trades in plants[J]. Plant Signaling and Behavior, 9(2): e27700. [12] Bao W Q, Wang X W, Chen M, et al.2018. A WRKY transcription factor, PcWRKY33, from Polygonum cuspidatum reduces salt tolerance in transgenic Arabidopsis thaliana[J]. Plant Cell Reports, 37(7): 1033-1048. [13] Besseau S, Li J, Palva E T.2012. WRKY54 and WRKY70 co-operate as negative regulators of leaf senescence in Arabidopsis thaliana[J]. Journal of Experimental Botany, 2012, 63(7): 2667-2679. [14] Birkenbihl R P, Kracher B, Roccaro M, et al.2017. Induced genome-wide binding of three Arabidopsis WRKY transcription factors during early MAMP-triggered immunity[J]. The Plant Cell, 29(1): 20-38. [15] Bo C, Chen H W, Luo G W, et al.2020. Maize WRKY114 gene negatively regulates salt-stress tolerance in transgenic rice[J]. Plant Cell Reports, 39(1): 135-148. [16] Cai H Y, Yang S, Yan Y, et al.2015. CaWRKY6 transcriptionally activates CaWRKY40, regulates Ralstonia solanacearum resistance, and confers high-temperature and high-humidity tolerance in pepper[J]. Journal of Experimental Botany, 66(11): 3163-3174. [17] Cai M, Qiu D, Yuan T, et al.2008. Identification of novel pathogen-responsive cis-elements and their binding proteins in the promoter of OsWRKY13, a gene regulating rice disease resistance[J]. Plant, Cell and Environment, 31(1): 86-96. [18] Cai R H, Dai W, Zhang C S, et al.2017. The maize WRKY transcription factor ZmWRKY17 negatively regulates salt stress tolerance in transgenic Arabidopsis plants[J]. Planta, 246(6): 1215-1231. [19] Cardinale F, Jonak C, Ligterink W, et al.2000. Differential activation of four specific MAPK pathways by distinct elicitors[J]. Journal of Biological Chemistry, 275(47): 36734-36740. [20] Chang I F, Curran A, Woolsey R, et al.2009. Proteomic profiling of tandem affinity purified 14-3-3 protein complexes in Arabidopsis thaliana[J]. Proteomics, 9(11): 2967-2985. [21] Che Y M, Zhen Z, Dan Z, et al.2019. VvWRKY13 from Vitis vinifera negatively modulates salinity tolerance[J]. Plant Cell, Tissue and Organ Culture, 139(3): 455-465. [22] Chen C, Chen Z.2002. Potentiation of developmentally regulated plant defense response by AtWRKY18, a pathogen-induced Arabidopsis transcription factor[J]. Plant Physiology, 129(2): 706-716. [23] Chen F, Hu Y, Vannozzi A, et al.2018. The WRKY transcription factor family in model plants and crops[J]. Critical Reviews in Plant Sciences, 36(5-6): 311-335. [24] Chen H, Lai Z B, Shi J W, et al.2010a. Roles of Arabidopsis WRKY18, WRKY40 and WRKY60 transcription factors in plant responses to abscisic acid and abiotic stress[J]. BMC Plant Biology, 10: 281. [25] Chen H, Chen J, Li M, et al.2017a. A bacterial type Ⅲ effector targets the master regulator of salicylic acid signaling, NPR1, to subvert plant immunity[J]. Cell Host and Microbe, 22(6): 777-788. [26] Chen J N, Nolan T M, Ye H, et al.2017b. Arabidopsis WRKY46, WRKY54, and WRKY70 transcription factors are involved in brassinosteroid-regulated plant growth and drought responses[J]. The Plant Cell, 29(6): 1425-1439. [27] Chen L G, Zhang L P, Yu D Q.2010b. Wounding-induced WRKY8 is involved in basal defense in Arabidopsis[J]. Molecular Plant-Microbe Interactions, 23(5): 558-565. [28] Chen L G, Zhang L P, Li D B, et al.2013. WRKY8 transcription factor functions in the TMV-cg defense response by mediating both abscisic acid and ethylene signaling in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the USA, 110(21): E1963-E1971. [29] Cheng H T, Liu H B, Deng Y, et al.2015. The WRKY45-2 WRKY13 WRKY42 transcriptional regulatory cascade is required for rice resistance to fungal pathogen[J]. Plant Physiology, 167(3): 1087-1099. [30] Cheng Y, Zhou Y, Yang Y, et al.2012. Structural and functional analysis of VQ motif-containing proteins in Arabidopsis as interacting proteins of WRKY transcription factors[J]. Plant Physiology, 159(2): 810-825. [31] Chi Y J, Yang Y, Zhou Y, et al.2013. Protein-protein interactions in the regulation of WRKY transcription factors[J]. Molecular Plant, 6(2): 287-300. [32] Choi C, Hwang S H, Fang I R, et al.2015. Molecular characterization of Oryza sativa WRKY6, which binds to W-box-like element 1 of the Oryza sativa pathogenesis-related (PR) 10a promoter and confers reduced susceptibility to pathogens[J]. New Phytologist, 208(3): 846-859. [33] Ciolkowski I, Wanke D, Birkenbihl R P, et al.2008. Studies on DNA-binding selectivity of WRKY transcription factors lend structural clues into WRKY-domain function[J]. Plant Molecular Biology, 68: 81-92. [34] Conrath U.2006. Systemic acquired resistance[J]. Plant Signaling and Behavior, 1(4): 179-184. [35] Dai X Y, Wang Y Y, Zhang W H.2016. OsWRKY74, a WRKY transcription factor, modulates tolerance to phosphate starvation in rice[J]. Journal of Experimental Botany, 67(3): 947-960. [36] Ding W W, Fang W B, Shi S Y, et al.2016. Wheat WRKY type transcription factor gene TaWRKY1 is essential in mediating drought tolerance associated with an ABA-dependent pathway[J]. Plant Molecular Biology Reporter, 34(6): 1111-1126. [37] Dodds P N, Rathjen J P.2010. Plant immunity: Towards an integrated view of plant-pathogen interactions[J]. Nature Reviews Genetics, 11(8): 539-548. [38] Dong H, Tan J, Li M, et al.2019. Transcriptome analysis of soybean WRKY TFs in response to Peronospora manshurica infection[J]. Genomics, 111(6): 1412-1422. [39] Dong J X, Chen C H, Chen Z X.2003. Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response[J]. Plant Molecular Biology, 51(1): 21-37. [40] El-Esawi M A, Al-Ghamdi A A, Ali H M, et al.2019. Overexpression of AtWRKY30 transcription factor enhances heat and drought stress tolerance in wheat (Triticum aestivum L.)[J]. Genes, 10(2): 163. [41] Eulgem T, Rushton P J, Schmelzer E, et al.1999. Early nuclear events in plant defence signalling: Rapid gene activation by WRKY transcription factors[J]. The EMBO journal, 18(17): 4689-4699. [42] Eulgem T, Rushton P J, Robatzek S, et al.2000. The WRKY superfamily of plant transcription factors[J]. Trends in Plant Science, 5(5): 199-206. [43] Eulgem T, Somssich I E.2007. Networks of WRKY transcription factors in defense signaling[J]. Current Opinion in Plant Biology, 10(4): 366-371. [44] Fan S J, Dong L D, Han D, et al.2017. GmWRKY31 and GmHDL56 enhances resistance to Phytophthora sojae by regulating defense-related gene expression in soybean[J]. Frontiers in Plant Science, 8: 781. [45] Feng Y N, Cui R, Wang S L, et al.2020. Transcription factor BnaA9.WRKY47 contributes to the adaptation of Brassica napus to low boron stress by up-regulating the boric acid channel gene BnaA3.NIP5;1[J]. Plant Biotechnology Journal, 18(5): 1241-1254. [46] Finatto T, Viana V E, Woyann L G, et al.2018. Can WRKY transcription factors help plants to overcome environmental challenges?[J]. Genetics and Molecular Biology, 41(3): 533-544. [47] Gao H M, Wang Y F, Xu P, et al.2018. Overexpression of a WRKY transcription factor TaWRKY2 enhances drought stress tolerance in transgenic wheat[J]. Frontiers in Plant Science, 9: 997. [48] Gu L J, Ma Q, Zhang C, et al.2019. The cotton GhWRKY91 transcription factor mediates leaf senescence and responses to drought stress in transgenic Arabidopsis thaliana[J]. Frontiers in Plant Science, 10: 1352. [49] Guo Q, Zhao L, Fan X Q, et al.2019. Transcription factor GarWRKY5 is involved in salt stress response in diploid cotton species (Gossypium aridum L.)[J]. International Journal of Molecular Sciences, 20(21): 5244. [50] Han X F, Li S, Zhang M, et al.2019a. Regulation of GDSL lipase gene expression by the MPK3/MPK6 cascade and its downstream WRKY transcription factor(s) in Arabidopsis immunity[J]. Molecular Plant-Microbe Interactions, 32(6): 673-684. [51] Han Y Y, Fan T T, Zhu X Y, et al.2019b. WRKY12 represses GSH1 expression to negatively regulate cadmium tolerance in Arabidopsis[J]. Plant Molecular Biology, 99(1-2): 149-159. [52] He G H, Xu J Y, Wang Y X, et al.2016. Drought-responsive WRKY transcription factor genes TaWRKY1 and TaWRKY33 from wheat confer drought and/or heat resistance in Arabidopsis[J]. BMC Plant Biology, 16: 116. [53] Heerah S, Katari M, Penjor R, et al.2019. WRKY1 mediates transcriptional regulation of light and nitrogen signaling pathways[J]. Plant Physiology, 181(3): 1371-1388. [54] Hu L F, Ye M, Li R, et al.2015. The rice transcription factor WRKY53 suppresses herbivore-induced defenses by acting as a negative feedback modulator of map kinase activity[J]. Plant Physiology, 169(4): 2907-2921. [55] Hu Y R, Chen L G, Wang H P, et al.2013. Arabidopsis transcription factor WRKY8 functions antagonistically with its interacting partner VQ9 to modulate salinity stress tolerance[J]. The Plant Journal, 74(5): 730-745. [56] Huang S X, Gao Y F, Liu J K, et al.2012. Genome-wide analysis of WRKY transcription factors in Solanum lycopersicum[J]. Molecular Genetics and Genomics, 287(6): 495-513. [57] Hussain A, Li X, Weng Y H, et al.2018a. CaWRKY22 acts as a positive regulator in pepper response to Ralstonia solanacearum by constituting networks with CaWRKY6, CaWRKY27, CaWRKY40, and CaWRKY58[J]. International Journal of Molecular Sciences, 19(5): 1426. [58] Hussain R M F, Sheikh A H, Haider I, et al.2018b. Arabidopsis WRKY50 and TGA transcription factors synergistically activate expression of PR1[J]. Frontiers in Plant Science, 9: 930. [59] Ishiguro S, Nakamura K.1994. Characterization of a cDNA encoding a novel DNA-binding protein, SPF1, that recognizes SP8 sequences in the 5' upstream regions of genes coding for sporamin and β-amylase from sweet potato[J]. Molecular and General Genetics, 244(6): 563-571. [60] Jiang J J, Ma S H, Ye N H, et al.2017. WRKY transcription factors in plant responses to stresses[J]. Journal of Integrative Plant Biology, 59(2): 86-101. [61] Jiang Y, Duan Y, Yin J, et al.2014. Genome-wide identification and characterization of the Populus WRKY transcription factor family and analysis of their expression in response to biotic and abiotic stresses[J]. Journal of Experimental Botany, 65(22): 6629-6644. [62] John Lilly J, Subramanian B.2019. Gene network mediated by WRKY13 to regulate resistance against sheath infecting fungi in rice (Oryza sativa L.)[J]. Plant Science, 280: 269-282. [63] Journot-Catalino N, Somssich I E, Roby D, et al.2006. The transcription factors WRKY11 and WRKY17 act as negative regulators of basal resistance in Arabidopsis thaliana[J]. The Plant Cell, 18(11): 3289-3302. [64] Kanofsky K, Bahlmann A K, Hehl R.2017. Combinatorial requirement of W- and WT-boxes in microbe-associated molecular pattern-responsive synthetic promoters[J]. Plant Cell Reports, 36(6): 971-986. [65] Khan M I, Zhang Y W, Liu Z Q, et al.2018. CaWRKY40b in pepper acts as a negative regulator in response to Ralstonia solanacearum by directly modulating defense genes including CaWRKY40[J]. International Journal of Molecular Sciences, 19(5): 1403. [66] Kim K C, Lai Z B, Fan B F, et al.2008. Arabidopsis WRKY38 and WRKY62 transcription factors interact with histone deacetylase 19 in basal defense[J]. The Plant Cell, 20(9): 2357-2371. [67] Lai Z B, Vinod K M, Zheng Z Y, et al.2008. Roles of Arabidopsis WRKY3 and WRKY4 transcription factors in plant responses to pathogens[J]. BMC Plant Biology, 8: 68-81. [68] Lai Z B, Li Y, Wang F, et al.2011. Arabidopsis sigma factor binding proteins are activators of the WRKY33 transcription factor in plant defense[J]. The Plant Cell, 23(10): 3824-3841. [69] Lee H Y, Cha J Y, Choi C Y, et al.2018. Rice WRKY11 plays a role in pathogen defense and drought tolerance[J]. Rice, 11: 5. [70] Lei R H, Li X L, Ma Z B, et al.2017. Arabidopsis WRKY2 and WRKY34 transcription factors interact with VQ20 protein to modulate pollen development and function[J]. The Plant Journal, 91(6): 962-976. [71] Li C X, Yan J Y, Ren J Y, et al.2019a. A WRKY transcription factor confers aluminum tolerance via regulation of cell wall modifying genes[J]. Journal of Integrative Plant Biology, 62(8): 1176-1192. [72] Li J, Brader G, Kariola T, et al.2006. WRKY70 modulates the selection of signaling pathways in plant defense[J]. The Plant Journal, 46(3): 477-491. [73] Li S, Nayar S, Jia H Y, et al.2020a. The Arabidopsis hypoxia inducible AtR8 long non-coding RNA also contributes to plant defense and root elongation coordinating with WRKY genes under low levels of salicylic acid[J]. Non-Coding RNA, 6: 8. [74] Li S J, Zhou X, Chen L G, et al.2010. Functional characterization of Arabidopsis thaliana WRKY39 in heat stress[J]. Molecules and cells, 29(5): 475-483. [75] Li S J, Fu Q T, Chen L G, et al.2011. Arabidopsis thaliana WRKY25, WRKY26, and WRKY33 coordinate induction of plant thermotolerance[J]. Planta, 233(6): 1237-1252. [76] Li Z, Hua X T, Zhong W M, et al.2020b. Genome-wide identification and expression profile analysis of WRKY family genes in the autopolyploid Saccharum spontaneum[J]. Plant and Cell Physiology, 61(3): 616-630. [77] Li Z, Li L, Zhou K H, et al.2019b. GhWRKY6 acts as a negative regulator in both transgenic Arabidopsis and cotton during drought and salt stress[J]. Frontiers in Genetics, 10: 392. [78] Liu D L, Leib K, Zhao P Y, et al.2014. Phylogenetic analysis of barley WRKY proteins and characterization of HvWRKY1 and -2 as repressors of the pathogen-inducible gene HvGER4c[J]. Molecular Genetics and Genomics, 289(6): 1331-1345. [79] Liu F, Li X X, Wang M R, et al.2018a. Interactions of WRKY15 and WRKY33 transcription factors and their roles in the resistance of oilseed rape to Sclerotinia infection[J]. Plant Biotechnology Journal, 16(4): 911-925. [80] Liu Q, Li X, Yan S J, et al.2018b. OsWRKY67 positively regulates blast and bacteria blight resistance by direct activation of PR genes in rice[J]. BMC Plant Biology, 18: 257. [81] Liu Q, Zhang G Y, Chen S Y.2001. Structure and regulatory function of plant transcription factors[J]. Chinese Science Bulletin, 46(4): 271-278. [82] Liu Z Q, Yan L, Wu Z, et al.2012. Cooperation of three WRKY-domain transcription factors WRKY18, WRKY40, and WRKY60 in repressing two ABA-responsive genes ABI4 and ABI5 in Arabidopsis[J]. Journal of Experimental Botany, 63(18): 6371-6392. [83] Maeo K, Hayashi S, Kojima-Suzuki H, et al.2001. Role of conserved residues of the WRKY domain in the DNA-binding of tobacco WRKY family proteins[J]. Bioscience, Biotechnology, and Biochemistry, 65(11): 2428-2436. [84] Mare C, Mazzucotelli E, Crosatti C, et al.2004. Hv-WRKY38: a new transcription factor involved in cold- and drought-response in barley[J]. Plant Molecular Biology, 55(3): 399-416. [85] Mehanathan M, Bonthala V S, Rohit K, et al.2015. Global analysis of WRKY transcription factor superfamily in Setaria identifies potential candidates involved in abiotic stress signaling[J]. Frontiers in Plant Science, 6: 910. [86] Menke F L H, Kang H G, Chen Z X, et al.2005. Tobacco transcription factor WRKY1 is phosphorylated by the MAP kinase SIPK and mediates HR-like cell death in tobacco[J]. Molecular Plant-Microbe Interactions, 18(10):1027-1034. [87] Mitsuda N, Ohme-Takagi M.2009. Functional analysis of transcription factors in Arabidopsis[J]. Plant Cell Physiology, 50: 1232-1248. [88] Mohanta T K, Park Y H, Bae H.2016. Novel genomic and evolutionary insight of WRKY transcription factors in plant lineage[J]. Scientific Reports, 6: 37309. [89] Nam T N, Thia L H, Mai D S, et al.2017. Overexpression of NbWRKY79 enhances salt stress tolerance in Nicotiana benthamiana[J]. Acta Physiologiae Plantarum, 39: 121. [90] Ning P, Liu C C, Kang J Q, et al.2017. Genome-wide analysis of WRKY transcription factors in wheat (Triticum aestivum L.) and differential expression under water deficit condition[J]. PeerJ, 5: e3232. [91] Niu C F, Wei W, Zhou Q Y, et al.2012. Wheat WRKY genes TaWRKY2 and TaWRKY19 regulate abiotic stress tolerance in transgenic Arabidopsis plants[J]. Plant, Cell and Environment, 35(6): 1156-1170. [92] Park C Y, Lee J H, Yoo J H, et al.2005. WRKY group Ⅱd transcription factors interact with calmodulin[J]. Federation of European Biochemical Societies, 579(6): 1545-1550. [93] Pillai S E, Kumar C, Patel H K, et al.2018. Overexpression of a cell wall damage induced transcription factor, OsWRKY42, leads to enhanced callose deposition and tolerance to salt stress but does not enhance tolerance to bacterial infection[J]. BMC Plant Biology, 18: 177. [94] Priest H D, Filichkin S A, Mockler T C.2009. Cis-regulatory elements in plant cell signaling[J]. Current Opinion Plant Biology, 12(5): 643-649. [95] Qiu D Y, Xiao J, Ding X H, et al.2007. OsWRKY13 mediates rice disease resistance by regulating defense related genes in salicylate and jasmonate-dependent signaling[J]. Molecular Plant-Microbe Interaction, 20: 492-499. [96] Qiu Y P, Jing S J, Fu J, et al.2004. Cloning and analysis of expression profile of 13 WRKY genes in rice[J]. Chinese Science Bulletin, 49(20): 2159-2168. [97] Qiu Y P, Yu D Q.2009. Over-expression of the stress-induced OsWRKY45 enhances disease resistance and drought tolerance in Arabidopsis[J]. Environmental and Experimental Botany, 65(1): 35-47. [98] Rinerson C I, Rabara R C, Tripathi P, et al.2015. The evolution of WRKY transcription factors[J]. BMC Plant Biology, 15: 66. [99] Rizhsky L, Liang H, Mittler R.2002. The combined effect of drought stress and heat shock on gene expression in tobacco[J]. Plant Physiology, 130(3): 1143-1151. [100] Ross C A, Liu Q, Shen Q X.2007. The WRKY gene family in rice (Oryza sativa)[J]. Journal of Integrative Plant Biology, 2007, 49(6): 827-842. [101] Rushton D L, Tripathi P, Rabara R C, et al.2012. WRKY transcription factors: Key components in abscisic acid signalling[J]. Plant Biotechnology Journal, 10(1): 2-11. [102] Rushton P J, Torres J T, Parniske M, et al.1996. Interaction of elicitor-induced DNA-binding proteins with elicitor response elements in the promoters of parsley PR1 genes[J]. The EMBO Journal, 15(20): 5690-5700. [103] Rushton P J, Somssich I E, Ringler P, et al.2010. WRKY transcription factors[J]. Trends in Plant Science, 15(5): 247-258. [104] Shen Z D, Yao J, Sun J, et al.2015. Populus euphratica HSF binds the promoter of WRKY1 to enhance salt tolerance[J]. Plant Science, 235: 89-100. [105] Sheng Y B, Yan X X, Huang Y, et al.2019. The WRKY transcription factor, WRKY13, activates PDR8 expression to positively regulate cadmium tolerance in Arabidopsis[J]. Plant, Cell and Environment, 42(3): 891-903. [106] Shimono M, Sugano S, Nakayama A, et al.2007. Rice WRKY45 plays a crucial role in benzothiadiazole-inducible blast resistance[J]. The Plant Cell, 19(6): 2064-2076. [107] Skibbe M, Qu N, Gails Ivan, et al.2008. Induced plant defenses in the natural environment: Nicotiana attenuata WRKY3 and WRKY6 coordinate responses to herbivory[J]. The Plant Cell, 20: 1984-2000. [108] Song H, Wang P F, Lei H, et al.2016. Global analysis of WRKY genes and their response to dehydration and salt stress in soybean[J]. Frontiers in Plant Science, 7: 9. [109] Su T, Xu Q, Zhang F C, et al.2015. WRKY42 modulates phosphate homeostasis through regulating phosphate translocation and acquisition in Arabidopsis[J]. Plant Physiology, 167(4): 1579-1591. [110] Sun X M, Zhang L L, Wong D C J, et al.2019. The ethylene response factor VaERF092 from Amur grape regulates the transcription factor VaWRKY33, improving cold tolerance[J]. The Plant Journal, 99(5): 988-1002. [111] Tao Z, Liu H B, Qiu D Y, et al.2009. A pair of allelic WRKY genes play opposite roles in rice-bacteria interactions[J]. Plant Physiology, 151(2): 936-948. [112] Uji Y, Kashihara K, Kiyama H, et al.2019. Jasmonic acid-induced VQ-motif-containing protein OsVQ13 influences the OsWRKY45 signaling pathway and grain size by associating with OsMPK6 in rice[J]. International Journal of Molecular Sciences, 20(12): 2917. [113] Ülker B, Somssich I E.2004. WRKY transcription factors: from DNA binding towards biological function[J]. Current Opinion in Plant Biology, 7(5): 491-498. [114] Ullah A, Sun H, Hakim, et al.2018. A novel cotton WRKY gene, GhWRKY6-like, improves salt tolerance by activating the ABA signaling pathway and scavenging of reactive oxygen species[J]. Physiologia Plantarum, 162(4): 439-454. [115] van Verk M C, Pappaioannou D, Neeleman L, et al.2008. A novel WRKY transcription factor is required for induction of PR-1a gene expression by salicylic acid and bacterial elicitors[J]. Plant Physiology, 146(4): 1983-1995. [116] Wang C T, Ru J N, Liu Y W, et al.2018a. Maize WRKY transcription factor ZmWRKY106 confers drought and heat tolerance in transgenic plants[J]. International Journal of Molecular Sciences, 19(10): 3046. [117] Wang C T, Ru J N, Liu Y W, et al.2018b. The maize WRKY transcription factor ZmWRKY40 confers drought resistance in transgenic Arabidopsis[J]. International Journal of Molecular Sciences, 19(9): 2580. [118] Wang H H, Hao J J, Chen X J, et al.2007. Overexpression of rice WRKY89 enhances ultraviolet B tolerance and disease resistance in rice plants[J]. Plant Molecular Biology, 65(6): 799-815. [119] Wang J J, Tao F, An F, et al.2017a. Wheat transcription factor TaWRKY70 is positively involved in high-temperature seedling plant resistance to Puccinia striiformis f. sp. tritici[J]. Molecular Plant Pathology, 2017, 18(5): 649-661. [120] Wang L, Zhu W, Fang L C, et al.2014a. Genome-wide identification of WRKY family genes and their response to cold stress in Vitis vinifera[J]. BMC Plant Biology, 14(1): 103. [121] Wang X L, Yan Y, Li Y Z, et al.2014b. GhWRKY40, a multiple stress-responsive cotton WRKY gene, plays an important role in the wounding response and enhances susceptibility to Ralstonia solanacearum infection in transgenic Nicotiana benthamiana[J]. PLoS ONE, 9(4): e93577. [122] Wang L, Liu F, Zhang X, et al.2018c. Expression characteristics and functional analysis of the ScWRKY3 gene from sugarcane[J]. International Journal of Molecular Sciences, 19(12): 4059. [123] Wang X H, Guo R R, Tu M X, et al.2017b. Ectopic expression of the wild grape WRKY transcription factor VqWRKY52 in Arabidopsis thaliana enhances resistance to the biotrophic pathogen powdery mildew but not to the necrotrophic pathogen Botrytis cinerea[J]. Frontiers in Plant Science, 8: 97. [124] Wani S H, Kumar V, Shriram V, et al.2016. Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants[J]. The Crop Journal, 4(3): 162-176. [125] Wei K F, Chen J, Chen Y F, et al.2012. Molecular phylogenetic and expression analysis of the complete WRKY transcription factor family in maize[J]. DNA Research, 19(2): 153-164. [126] Wu J, Chen J B, Wang L F, et al.2017. Genome-wide investigation of WRKY transcription factors involved in terminal drought stress response in common bean[J]. Frontiers in Plant Science, 8: 380. [127] Wu X L, Shiroto Y, Kishitani S, et al.2009. Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing OsWRKY11 under the control of HSP101 promoter[J]. Plant Cell Reports, 28(1): 21-30. [128] Wu X, Tao M Z, Meng Y, et al.2020. The role of WRKY47 gene in regulating selenium tolerance in Arabidopsis thaliana[J]. Plant Biotechnology Reports, 14: 121-129. [129] Xie Z, Zhang Z L, Zou X L, et al.2005. Annotations and functional analyses of the rice WRKY gene superfamily reveal positive and negative regulators of abscisic acid signaling in aleurone cells[J]. Plant Physiology, 137(1): 176-189. [130] Xing D H, Lai Z B, Zheng Z Y, et al.2008. Stress- and pathogen-induced Arabidopsis WRKY48 is a transcriptional activator that represses plant basal defense[J]. Molecular Plant, 1(3): 459-470. [131] Xiong X P, Sun S C, Li Y J, et al.2019. The cotton WRKY transcription factor GhWRKY70 negatively regulates the defense response against Verticillium dahliae[J]. The Crop Journal, 7(3): 393-402. [132] Xu X P, Chen C H, Fan B F, et al.2006. Physical and functional interactions between pathogen-induced WRKY18, WRKY40, and WRKY60 transcription factors[J]. The Plant Cell, 18(5): 1310-1326. [133] Yan H R, Jia H H, Chen X B, et al.2014. The cotton WRKY transcription factor GhWRKY17 functions in drought and salt stress in transgenic Nicotiana benthamiana through ABA signaling and the modulation of reactive oxygen species production[J]. Plant and Cell Physiology, 55(12): 2060-2076. [134] Ye Q, Wang H, Su T, et al.2018. The ubiquitin E3 ligase PRU1 regulates WRKY6 degradation to modulate phosphate homeostasis in response to low-pi stress in Arabidopsis[J]. The Plant Cell, 30(5): 1062-1076. [135] Yokotani N, Sato Y, Tanabe S, et al.2013. WRKY76 is a rice transcriptional repressor playing opposite roles in blast disease resistance and cold stress tolerance[J]. Journal of Experimental Botany, 64(16): 5085-5097. [136] Yu D Q, Chen C H, Chen Z X.2001. Evidence for an important role of WRKY DNA binding proteins in the regulation of NPR1 gene expression[J]. The Plant Cell, 13(7): 1527-1540. [137] Zhang Y J, Wang L J.2005. The WRKY transcription factor superfamily: its origin in eukaryotes and expansion in plants[J]. BMC Evolutionary Biology, 5(1): 1-12. [138] Zhang Y, Yu H J, Yang X Y, et al.2016. CsWRKY46, a WRKY transcription factor from cucumber, confers cold resistance in transgenic-plant by regulating a set of cold-stress responsive genes in an ABA-dependent manner[J]. Plant Physiology and Biochemistry, 108: 478-487. [139] Zhao K X, Chu S S, Zhang X D, et al.2020. AtWRKY21 negatively regulates tolerance to osmotic stress in Arabidopsis[J]. Environmental and Experimental Botany, 169: 103920. [140] Zhou L, Wang N N, Gong S Y, et al.2015. Overexpression of a cotton (Gossypium hirsutum) WRKY gene, GhWRKY34, in Arabidopsis enhances salt-tolerance of the transgenic plants[J]. Plant Physiology and Biochemistry, 96: 311-320. [141] Zhou Q Y, Tian A G, Zou H F, et al.2008. Soybean WRKY-type transcription factor genes, GmWRKY13, GmWRKY21, and GmWRKY54, confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants[J]. Plant Biotechnology Journal, 6(5): 486-503. [142] Zhou S, Zheng W J, Liu B H, et al.2019. Characterizing the role of TaWRKY13 in salt tolerance[J]. International Journal of Molecular Sciences, 20(22): 5712. [143] Zou L J, Yang F, Ma Y H, et al.2019. Transcription factor WRKY30 mediates resistance to Cucumber mosaic virus in Arabidopsis[J]. Biochemical and Biophysical Research Communications, 517(1): 118-124.