Effect of Ectopic Expression of AtCKX2 Gene on the Development of Tomato (Solanum lycopersicum) Fruits
LIU Xue-Xia1, LI Hu2, DONG Ying-Hua1, WU Han2, GAN Li-Jun1, *
1 College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; 2 College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
Abstract:Tomato (Solanum lycopersicum) is one of the most widely grown vegetables in the world. It is a model crop for studying the development of climacteric fruits. Various plant hormones are involved in regulating the growth and development of tomato fruits. Cytokinins can promote cell division of fruit, make fruit larger, increase fruit weight, delay fruit senescence, and increase fruit yield. In order to study the effect of endogenous cytokinin on tomato fruits, the expression vector for the tomato fruit-specific promoter Tfm7 to drive the Arabidopsis thaliana cytokinin oxidase 2 gene (AtCKX2) was constructed. The transgenic plants were obtained by the method of Agrobacterium tumefaciens transformation. The transgenic plants were verified by the specific primers of the promoter Tfm7 and the target gene AtCKX2. The PCR results indicated that the promoter Tfm7 and the target gene AtCKX2 had been transferred into the tomato plants. The results of qRT-PCR showed that the AtCKX2 gene was not expressed in the leaves of tomato plants and was expressed in the pollen flowers. The expression level of AtCKX2 gene was the highest in the fruit 5 d after pollination. As the fruit developed, the expression level of AtCKX2 gene gradually decreased, and it was hardly expressed in the late stage of fruit development. Studies on tomato fruits showed that compared with wild-type tomato fruits, the content of endogenous cytokinin zeatin (ZT) and isopentenyladenine (iP) in transgenic tomato fruits decreased, the single fruit weight, vertical and horizontal diameter of transgenic fruits decreased, and the content of soluble sugar and soluble protein in fruits decreased, the content of titratable acid increased. These results indicate that endogenous cytokinins can affect the growth and development of tomato fruits. This study provides new ideas for the role of cytokinins in fruit development.
刘雪霞, 李虎, 董映华, 吴寒, 甘立军. 异源表达AtCKX2基因对番茄果实发育的影响[J]. 农业生物技术学报, 2020, 28(3): 399-406.
LIU Xue-Xia, LI Hu, DONG Ying-Hua, WU Han, GAN Li-Jun. Effect of Ectopic Expression of AtCKX2 Gene on the Development of Tomato (Solanum lycopersicum) Fruits. 农业生物技术学报, 2020, 28(3): 399-406.
1 陈建中, 张谷雄, 章镇. 2002. CPPU对温州蜜柑着果和果实品质的影响[J]. 果树学报, 19(2): 139-140. (Chen J Z, Zhang G X, Zhang Z.2002. Effects of CPPU on fruit setting and fruit quailty of Owari Unshǔ[J]. Journal of Fruit science, 19(2): 139-140.) 2 程云. 2007. CPPU对梨果实生长发育及生理生化特性的影响[D]. 博士学位论文, 南京农业大学, 导师: 汪良驹. pp: 26-34. (Cheng Y.2007. Effects of CPPU on development and physiological and biochemical characteristics of pear fruits[D]. Thesis for Ph.D., Nanjing Agriculture University, Supervisor: Wang L J. pp. 26-34.) 3 崔璨, 王蓉, 刘鑫, 等. 2019. 番茄果实不同成熟期及贮藏时间对硝酸盐含量的影响[J]. 北京农学院学报, 3: 1-3. (Cui C, Wang R, Liu X, et al.2019. Effects of different ripening stages and storage time of tomato fruits on nitrate content[J]. Journal of Beijing University of Agriculture, 3: 1-3.) 4 方金豹, 黄宏文, 李绍华. 2002. CPPU对猕猴桃果实发育过程中糖、酸含量变化的影响[J].果树学报, 19(4): 235-239. (Fang J B, Huang H W, Li S H.2002. Influence of CPPU on Kiwifruit sugar content and titratable acidity during fruit development[J]. Journal of Fruit Science, 19(4): 235-239. 5 冯莉. 2007. CPPU对无核黄皮果实生长和风味品质的影响[J]. 华南热带农业大学学报, 13(3): 6-8. (Feng L.2007. Effects of CPPU on fruit growth and quailty of seedless wampee[J]. Journal of South China University of Troplcal Agriculture, 13(3): 6-8. 6 费学谦, 方学智, 丁明, 等. 2005.不同浓度CPPU处理对中华猕猴桃生长与营养品质的影响[J]. 农业环境科学学报, 24: 30-33. (Fei X Q, Fang X Z, Ding M, et al.2005.Effects of different concentrations of CPPU on growth and nutritional quailty of Actinidia chinensis Planch[J]. Journal of Agro-environment Science, 24: 30-33.) 7 郝建军, 陈凤玉, 康宗利, 等. 2001. 细胞分裂素和防落素复合剂对番茄产量的影响[J]. 辽宁农业科学, 6: 30-32. (Hao J J, Chen F Y, Kang Z L.et al.2010. Effects of CTK and PCPA Mixture on Yield of Tomato[J]. Liaoning Agricultural Sciences, 6: 30-32.) 8 李晓晶, 高志奎, 王梅, 等. 2010. 细胞分裂素对番茄子房和果实表面光系统Ⅱ光能吸收利用的影响[J]. 园艺学报, 37(5): 749-756. (Li X J, Gao Z K, Wang M, et al.2010. Effects on PSⅡ light absorption and utilization of CTK on the surface of tomato ovary and fruit[J]. Horticulturae Sinica, 37(5): 749-756.) 9 毛自朝, 于秋菊, 甄伟, 等. 2002. 果实专一性启动子驱动ipt基因在番茄中的表达及其对番茄果实发育的影响[J]. 科学通报, 47(6): 444-448. (Mao Z C, Yu Q J, Zhen W, et al.2002. Expression of ipt gene controlled by fruit-specific promoter in tomato influence the development of tomato fruits[J]. Chinese Science Bulletin, 47(6): 444-448.) 10 石进校, 刘应迪. 2000. 细胞分裂素处理对猕猴桃果实成分的影响[J]. 吉首大学学报(自然科学版), 21(2): 4-5. (Shi J X, Liu Y D.2000. Effects of cytokinin treatment on the composition of kiwifruit[J]. Journal of Jishou University (Natural Science Edition), 21(2): 4-5.) 11 王兴美. 2005. 种子特异启动子调控ipt基因表达对烟草种子发育的影响[D]. 硕士学位论文, 中国科学院(植物研究所), 导师: 马庆虎, pp: 20-61. (Wang X M.2005. Expression of ipt gene controlled by seed-specific promoter in transgenic tobacco influence development[D]. Thesis for M.S., Chinese Academy of Sciences (Plant research institute), Supervisor: Ma Q H. pp. 20-61.) 12 王学奎. 2006. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, pp.202-204, 190-192. (Wang X K.2006. Principles and Techniques of Plant Physiological and Biochemical Experiment[M]. Higher education press, Bei jing, China, pp. 202-204; 190-192.) 13 辛守鹏, 刘帅, 余阳. 2015. 赤霉素与细胞分裂素对葡萄果实邻近叶光合特性及果实品质的影响[J]. 应用生态学报, 26(6): 1814-1820. (Xin S P, Liu S, Yu Y, 2015. Effects of GA3 and CPPU on grape fruit adjacent leaf photosgnthesis and fruit quality[J]. Chinese Journal of Applied Ecology, 26(6): 1814-1820. 14 张宪政, 陈凤玉, 王荣富. 1994. 植物生理学实验技术[M]. 沈阳: 辽宁科学技术出版社, pp. 144-151. (Zhang X Z, Chen F Y, Wang R F.1994. Techniques of Piant Physiology Experiment[M]. Liaoning Science and Technology Press, Shenyang, China, pp. 144-151.) 15 Argueso C T, Ferreira F J, Epple P, et al.2012. Two-component elements mediate interactions between cytokinin and salicylic acid in plant immunity[J]. PLOS Genetics, 8(1): e1002448. 16 Avabaev A M, Somov K A, Yuldashev R A, et.al.2012. Cytokinin oxidase is key enzyme of cytokinin degradation[J]. Biochemistry, 77(12):1354-1361. 17 Azzi L, Deluche C, Gévaudant, Frédéric, et al.2015. Fruit growth-related genes in tomato[J]. Journal of Experimental Botany, 66(4): 1075-1086. 18 Gillaspy G, Bendavid, H, Gruissem W.1993. Fruits: A developmental perspective[J]. Plant Cell, (5): 1439-1451. 19 Hwang Ildoo, Sakakibara Hitoshi.2010. Cytokinin biosynthesis and perception[J]. Physiologia Plantarum, 126(4): 528-538. 20 Hyo J K, Hojin R, Sung H H, et al.2006. Cytokinin-mediated control of leaf longevity by AHK3 through phosphorylation of ARR2 in Arabidopsis[J]. Proceedings of the National Academy Science, 103(3): 814-819. 21 Matsuo S, Kikuchi K, Fukuda M, et al.2012. Roles and regulation of cytokinins in tomato fruit development[J]. Journal of Experimental Botany, 63(15): 5569-5579. 22 Pandey R, Gupta A, Chowdhary A, et al.2015. Over-expression of mouse ornithine decarboxylase gene under the control of fruit-specific promoter enhances fruit quality in tomato[J]. Plant Molecular Biology, 87(3): 249-260. 23 SantinoC G, Stanford G L, Conner T W.1997. Developmental and transgenic analysis of two tomato fruit enhanced genes[J]. Plant Molecular Biology, 33(3): 405-416. 24 Schmitz R Y, Foloke S.1972. Cytokinins: Synthesis and biological activity of geometric and position isomers of zeatin[J]. Plant Physiology, 50(6): 702-705. 25 Shusei S, Satoshi T, Hideki H, et al.2012. The tomato genome sequence provides insights into fleshy fruit evolution[J]. Nature, 485(7400): 635-641.