Abstract:Several novel gene editing techniques have been applied in scientific research and livestock breeding in recent years, including zinc finger protein nuclease (ZFN), transcriptional activator-like effector nuclease (TALEN), clustered regularly interspaced short palindromic repeats/CRISPR associated proteins (CRISPR/Cas) system. These gene editing techniques site-directly edit genomes by recognizing the target sites according to the specific structure followed by endonuclease dissection,which is characterized by high efficiency, accuracy, and simple production. In this paper, we demonstrated the basic principles, differences and potential main problems of above three gene editing techniques, summarized the application in the main livestock pigs, cattle and sheep, and provided an outlook of the future of these techniques in application.
[1] 付玉华, 周秀梅, 钱其军. 2010. 乳腺生物反应器的研究和产业化进展[J]. 中国畜牧兽医, 37(8): 45-51. (Fu Y H, Zhou X M, Qian Q J.2010. The current progress of mammary gland bioreactor for research and industry[J] China Animal Husbandry and Veterinary Medicine, 37(8): 45-51.) [2] 葛恒涛. 2016. 利用山羊乳腺生物反应器制备具有免疫原性病毒结构蛋白的研究[D].博士学位论文, 西北农林科技大学, 导师:张涌, pp. 76-94. (Ge H T.2016. Production of immunogenic virus structural proteins by goat mammary gland bioreactor[D]Thesis for ph.D., North West Agriculture and Forestry University ,Supervisor:Zhong Y, pp. 76-94.) [3] 葛陆星, 康健, 董翔宸, 等. 2017. CRISPR/Cas9体系的多元化发展和应用[J]. 农业生物技术学报, 25(6):939-953. (Ge L X, KANG J, Dong X C, et al.2017.The diversified development and application of CRISPR/Cas9 system[J]. Journal of Agricultural Biotechnology, 25(6): 939-953.) [4] 王少华, 赵盼盼, 刘通, 等. 2018. 利用CRISPR/Cas9n技术生产抗蓝耳病的基因编辑克隆猪[J]. 浙江大学学报(农业与生命科学版),44(2):157-161. (Wang S H, Zhao P P, Liu T, et al.2018. Production of Porcine reproductive and respiratory syndrome virus (PRRSV)-resistant genomeedited cloned pigs using CRISPR/Cas9n system. Journal of Zhejiang University (Agric. & Life Sci.), 44(2):157-161.) [5] 张驹. 2016. CRISPR/Cas9系统介导羊MSTN基因敲除和定点整合fat-1基因的研究[D].硕士学位论文, 内蒙古大学, 导师:仓明, pp. 47-54. (Zhang J.2016.Generation of MSTN gene knock-out and fat-1 knock-in via CRISPER/Cas9[D]Thesis for M.S., Inner Mongolia University, Supervisor: Cang M, pp. 47-54.) [6] 朱红梅. 2016. TALENs介导的人α-乳白蛋白基因定点敲入β-乳球蛋白位点奶山羊生产[D]. 博士学位论文,西北农林科技大学,导师:靳亚平, pp. 71-84. (Zhu H M.2016. TALENs mediated site-specific insertion of human-lactabumin gene into goat β-lactoglobulin locus[D]Thesis for ph.D., North West Agriculture and Forestry University ,Supervisor: Jin Y P, pp. 71-84.) [7] Abudayyeh O O, Gootenberg J S, Konermann S, et al.2016. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector[J]. Science, 353(6299): aaf5573. [8] Bedell V M, Wang Y, Campbell J M, et al.2012. In vivo genome editing using a high-efficiency TALEN system[J]. Nature, 491(7422): 114-118. [9] Bibikova M, Beumer K, Trautman J K, et al.2003. Enhancing gene targeting with designed zinc finger nucleases[J]. Science, 300(5620): 764-764. [10] Bonas U, Stall R E, Staskawicz B.1989. Genetic and structural characterization of the avirulence gene avrBs3 from Xanthomonas campestris pv. vesicatoria[J]. Molecular & General Genetics Mgg, 218(1): 127-136. [11] Burkard C, Lillico S G, Reid E, et al.2017. Precision engineering for PRRSV resistance in pigs: Macrophages from genome edited pigs lacking CD163 SRCR5 domain are fully resistant to both PRRSV genotypes while maintaining biological function[J]. PLoS Pathogens, 13(2): e1006206. [12] Calvert J G, Slade D E, Shields S L, et al.2007. CD163 expression confers susceptibility to porcine reproductive and respiratory syndrome viruses[J]. Journal of Virology, 81(14): 7371. [13] Carlson D F, Fahrenkrug S C, Hackett P B.2012. Targeting DNA With Fingers and TALENs[J]. Molecular Therapy Nucleic Acids, 1(1): e3. [14] Carlson D F, Lancto C A, Zang B, et al.2016. Production of hornless dairy cattle from genome-edited cell lines[J]. Nature Biotechnology, 34(5): 479. [15] Carlson D F, Tan W, Lillico S G, et al.2012. Efficient TALEN-mediated gene knockout in livestock[J]. Proceedings of the National Academy of Sciences of the USA, 109(43): 17382-17387. [16] Carroll D.2011. Genome engineering with zinc-finger nucleases[J]. Genetics, 188(4): 773-782. [17] Cong L, Ran F A, Cox D, et al.2013. Multiplex Genomic Engineering Using CRISPR/Cas Systems[J]. Science, 339(6121): 819-823. [18] Cui C, Song Y, Liu J, et al.2015. Gene targeting by TALEN-induced homologous recombination in goats directs production of β-lactoglobulin-free, high-human lactoferrin milk[J]. Scientific Reports, 5: 10482. [19] Delay B D, Corkins M E, Hanania H L, et al.2017. Tissue-specific Gene Inactivation in Xenopus laevis: Knockout of lhx1 in the Kidney with CRISPR/Cas9[J]. Genetics, 208(2): 673-686. [20] Deltcheva E, Chylinski K, Sharma C M, et al.2011. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III[J]. Nature, 471(7340): 602-607. [21] Denecke S, Fusetto R, Batterham P.2017. Describing the role of Drosophila melanogaster ABC transporters in insecticide biology using CRISPR-Cas9 knockouts[J]. Insect Biochem Mol Biol, 91(12): 1-9. [22] Deng D, Yan C, Pan X, et al.2012. Structural basis for sequence-specific recognition of DNA by TAL effectors[J]. Science, 335(6069): 720-723. [23] Doench J G, Fusi N, Sullender M, et al.2016. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9[J]. Nature Biotechnology, 34(2): 184-191. [24] Doudna J A, Charpentier E.2014. Genome editing. The new frontier of genome engineering with CRISPR-Cas9[J]. Science, 346(6213): 1258096. [25] Feng Z, Zhang B, Ding W, et al.2013. Efficient genome editing in plants using a CRISPR/Cas system[J]. Cell Research, 23(10): 1229-1232. [26] Frock R L, Hu J, Meyers R M, et al.2015. Genome-wide detection of DNA double-stranded breaks induced by engineered nucleases[J]. Nature Biotechnology, 33(2): 179-186. [27] Fu Y, Foden J A, Khayter C, et al.2013. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells[J]. Nature Biotechnology, 31(9): 822. [28] Fu Y, Sander J D, Reyon D, et al.2014. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs[J]. Nature Biotechnology, 32(3): 279-284. [29] Gaj T, Guo J, Kato Y, et al.2012. Targeted gene knockout by direct delivery of ZFN proteins[J]. Nature Methods, 9(8): 805. [30] Gao Y, Wu H, Wang Y, et al.2017. Single Cas9 nickase induced generation of NRAMP1 knockin cattle with reduced off-target effects[J]. Genome Biology, 18(1): 13. [31] Gapinske M, Luu A, Winter J, et al.2018. CRISPR-SKIP: Programmable gene splicing with single base editors[J]. Genome Biology, 19(1): 107. [32] Gaudelli N M, Komor A C, Rees H A, et al.2017. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage[J]. Nature, 551: 464. [33] Grissa I, Vergnaud G, Pourcel C.2007. The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats[J]. BMC Bioinformatics, 8(1): 172. [34] Guo R, Wan Y, Dan X, et al.2016. Generation and evaluation ofMyostatinknock-out rabbits and goats using CRISPR/Cas9 system[J]. Scientific Reports, 6: 29855. [35] Hai T, Teng F, Guo R, et al.2014. One-step generation of knockout pigs by zygote injection of CRISPR/Cas system[J]. Cell Research, 24(3): 372. [36] Hauschild-Quintern J, Petersen B, Cost G J, et al.2013. Gene knockout and knockin by zinc-finger nucleases: Current status and perspectives[J]. Cellular & Molecular Life Sciences Cmls, 70(16): 2969. [37] Hauschild J, Niemann H.2011. CORRECTIONS: Efficient generation of a biallelic knockout in pigs using zinc-finger nucleases[J]. Proceedings of the National Academy of Sciences of the USA, 108(29): 12013. [38] Hinkley S J, Ankoudinova I, Barlow C K, et al.2011. A TALE nuclease architecture for efficient genome editing[J]. Nature Biotechnology, 29(20): 143-148. [39] Hou Z, Zhang Y, Propson N E, et al.2013. Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis[J]. Proceedings of the National Academy of Sciences of the USA, 110(39): 15644-15649. [40] Hsu P D, Scott D A, Weinstein J A, et al.2013. DNA targeting specificity of RNA-guided Cas9 nucleases[J]. Nature Biotechnology, 31(9): 827. [41] Ishino Y, Shinagawa H, Makino K, et al.1987. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product[J]. Journal of Bacteriology, 169(12): 5429-5433. [42] Jinek M, Chylinski K, Fonfara I, et al.2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 337(6096): 816-821. [43] Karginov F V, Hannon G J.2010. The CRISPR system: Small RNA-guided defense in bacteria and archaea[J]. Molecular Cell, 37(1): 7-19. [44] Kim D, Bae S, Park J, et al.2015. Digenome-seq: Genome-wide profiling of CRISPR-Cas9 off-target effects in human cells[J]. Nature Methods, 12(3): 237-243. [45] Kim S, Kim J S.2011. Targeted genome engineering via zinc finger nucleases[J]. Plant Biotechnology Reports, 5(1): 9-17. [46] Kim Y G, Cha J, Chandrasegaran S.1996. Hybrid restriction enzymes: zinc finger fusion to FokI cleavage domain[J]. Proceedings of the National Academy of Sciences of the USA, 93(3): 1156-1160. [47] Kitada T, Asakawa S, Hattori N, et al.1998. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism[J]. Nature, 392(6676): 605. [48] Kleinstiver B P, Prew M S, Tsai S Q, et al.2015. Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition[J]. Nature Biotechnology, 33(12): 1293-1298. [49] Klug A.2010. The discovery of zinc fingers and their applications in gene regulation and genome manipulation[J]. Annual Review of Biochemistry, 43(1): 213-231. [50] Komor A C, Kim Y B, Packer M S, et al.2016. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage[J]. Nature, 533(7603): 420-424. [51] Lesage S, Brice A.2009. Parkinson's disease: From monogenic forms to genetic susceptibility factors[J]. Human Molecular Genetics, 18(1): 48-59. [52] Li T, Huang S, Zhao X, et al.2011. Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes[J]. Nucleic Acids Research, 39(14): 6315. [53] Liu X, Wang Y, Guo W, et al.2013. Zinc-finger nickase-mediated insertion of the lysostaphin gene into the beta-casein locus in cloned cows[J]. Nature Communications, 4(Pt 9): 2565. [54] Liu X, Wang Y, Tian Y, et al.2014. Generation of mastitis resistance in cows by targeting human lysozyme gene to β-casein locus using zinc-finger nucleases[J]. Proceedings of the Royal Society B: Biological Sciences, 281(1780): 20133368. [55] Luo J, Song Z, Yu S, et al.2014. Efficient generation of myostatin (MSTN) biallelic mutations in cattle using zinc finger nucleases[J]. PLoS One, 9(4): e95225. [56] Lutz A J, Li P, Estrada J L, et al.2013. Double knockout pigs deficient in N-glycolylneuraminic acid and Galactose α-1,3-Galactose reduce the humoral barrier to xenotransplantation[J]. Xenotransplantation, 20(1): 27-35. [57] Ma T, Tao J, Yang M, et al.2017. An AANAT/ASMT transgenic animal model constructed with CRISPR/Cas9 system serving as the mammary gland bioreactor to produce melatonin-enrich milk in sheep[J]. Journal of Pineal Research, 63(1). [58] Ma X, Zhu Q, Chen Y, et al.2016. CRISPR/Cas9 platforms for genome editing in plants: Developments and applications[J]. Molecular Plant, 9(7): 961-974. [59] Makarova K, Grishin N, Shabalina S, et al.2006. A putative RNA-interference-based immune system in prokaryotes: Computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action[J]. Biology Direct, 1: 7. [60] Mani M, Kandavelou K, Durai S, et al.2005. Design, engineering, and characterization of zinc finger nucleases[J]. Biochemical & Biophysical Research Communications, 335(2): 447-457. [61] Martens G R, Reyes L M, Butler J R, et al.2017. Humoral reactivity of renal transplant-waitlisted patients to cells from GGTA1/CMAH/B4GalNT2, and SLA class I knockout pigs[J]. Transplantation, 101(4): e86. [62] Mcpherron A C, Lee S J.1997. Double muscling in cattle due to mutations in the myostatin?gene[J]. Proceedings of the National Academy of Sciences of the USA, 94(23): 12457-12461. [63] Moghaddassi S, Eyestone W, Bishop C E.2014. TALEN-mediated modification of the bovine genome for large-scale production of human serum albumin[J]. PLoS One, 9(9): e89631. [64] Mojica F J, Díez-Villaseñor C, Soria E, et al.2000. Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria[J]. Molecular Microbiology, 36(1): 244-246. [65] Mojica F J, Montoliu L.2016. On the Origin of CRISPR-Cas Technology: From Prokaryotes to Mammals[J]. Trends in Microbiology, 24(10): 811-820. [66] Moscou M J, Bogdanove A J.2009. A simple cipher governs DNA recognition by TAL effectors[J]. Science, 326(5959): 1501-1501. [67] Nakasuji T, Ogonuki N, Chiba T, et al.2017. Complementary critical functions of Zfy1 and Zfy2 in mouse spermatogenesis and reproduction[J]. PLoS genetics, 13(1): e1006578. [68] Nakasuji T, Ogonuki N, Chiba T, et al.2017. Complementary critical functions of Zfy1 and Zfy2 in mouse spermatogenesis and reproduction[J]. Plos Genetics, 13(1): e1006578. [69] Nishimasu H, Shi X, Ishiguro S, et al.2018. Engineered CRISPR-Cas9 nuclease with expanded targeting space[J]. Science. [70] Osborn M J, Starker C G, Mcelroy A N, et al.2013. TALEN-based gene correction for epidermolysis bullosa[J]. Molecular Therapy, 21(6): 1151-1159. [71] Palpant N J, Dudzinski D.2013. Zinc finger nucleases: Looking toward translation[J]. Gene Therapy, 20(2): 121-127. [72] Pattanayak V, Ramirez C L, Joung J K, et al.2011. Revealing off-target cleavage specificities of zinc-finger nucleases by in vitro selection[J]. Nature Methods, 8(9): 765-770. [73] Peng J, Wang Y, Jiang J, et al.2015. Production of Human Albumin in Pigs Through CRISPR/Cas9-Mediated Knockin of Human cDNA into Swine Albumin Locus in the Zygotes[J]. Scientific Reports, 5: 16705. [74] Qi L S, Larson M H, Gilbert L A, et al.2013. Repurposing CRISPR as an RNA-Guided Platform for Sequence-Specific Control of Gene Expression[J]. Cell, 152(5): 1173-1183. [75] Radecke S, Radecke F, Cathomen T, et al.2010. Zinc-finger Nuclease-induced Gene Repair With Oligodeoxynucleotides: Wanted and Unwanted Target Locus Modifications[J]. Molecular Therapy, 18(4): 743-753. [76] Ran F A, Cong L, Yan W X, et al.2015. In vivo genome editing using Staphylococcus aureus Cas9[J]. Nature, 520(7546): 186-191. [77] Richt J A, Kasinathan P, Hamir A N, et al.2007. Production of cattle lacking prion protein[J]. Nature Biotechnology, 25(1): 132-138. [78] Roper J, Tammela T, Akkad A, et al.2018. Colonoscopy-based colorectal cancer modeling in mice with CRISPR-Cas9 genome editing and organoid transplantation[J]. Nature Protocols, 13(2): 217-234. [79] Ryder P, Mchale M, Fort A, et al.2017. Generation of stable nulliplex autopolyploid lines of Arabidopsis thaliana using CRISPR/Cas9 genome editing[J]. Plant Cell Reports, 36(6): 1005-1008. [80] Shan Q, Wang Y, Li J, et al.2013. Targeted genome modification of crop plants using a CRISPR-Cas system[J]. Nature Biotechnology, 31(8): 686-688. [81] Shipman S L, Nivala J, Macklis J D, et al.2017. CRISPR-Cas encoding of a digital movie into the genomes of a population of living bacteria[J]. Nature, 547(7663). [82] Song K H, Kang Y J, Jin U H, et al.2010. Cloning and functional characterization of pig CMP-N-acetylneuraminic acid hydroxylase for the synthesis of N-glycolylneuraminic acid as the xenoantigenic determinant in pig-human xenotransplantation[J]. Biochemical Journal, 427(1): 179-188. [83] Sorek R, Kunin V, Hugenholtz P.2008. CRISPR--a widespread system that provides acquired resistance against phages in bacteria and archaea[J]. Nature Reviews Microbiology, 6(3): 181-186. [84] Tan W, Carlson D F, Lancto C A, et al.2013. Efficient nonmeiotic allele introgression in livestock using custom endonucleases[J]. Proceedings of the National Academy of Sciences of the USA, 110(41): 16526-16531. [85] Ul A Q, Chung J Y, Kim Y H.2015. Current and future delivery systems for engineered nucleases: ZFN, TALEN and RGEN[J]. Journal of Controlled Release, 205: 120-127. [86] Urnov F D, Rebar E J, Holmes M C, et al.2010. Genome editing with engineered zinc finger nucleases[J]. Nature Reviews Genetics, 11(9): 636-646. [87] Valente E M, Abousleiman P M, Caputo V, et al.2004. Hereditary early-onset Parkinson's disease caused by mutations in PINK1[J]. Science, 304(5674): 1158-1160. [88] Verma N, Zhu Z, Huangfu D.2017. CRISPR/Cas-Mediated Knockin in Human Pluripotent Stem Cells[J]. Methods in Molecular Biology, 1513: 119-140. [89] Wang K, Tang X, Xie Z, et al.2017. CRISPR/Cas9-mediated knockout of myostatin in Chinese indigenous Erhualian pigs[J]. Transgenic Research, 26(6): 1-7. [90] Wang X, Cao C, Huang J, et al.2016. One-step generation of triple gene-targeted pigs using CRISPR/Cas9 system[J]. Scientific Reports, 6: 20620. [91] Wang X, Yu H, Lei A, et al.2015. Generation of gene-modified goats targeting MSTN and FGF5 via zygote injection of CRISPR/Cas9 system[J]. Scientific Reports, 5: 13878. [92] Wang X L, Niu Y Y, Zhou J K, et al.2016. Multiplex gene editing via CRISPR/Cas9 exhibits desirable muscle hypertrophy without detectable off-target effects in sheep[J]. Scientific Reports, 6: 32271. [93] Whitworth K M, Rowland R R, Ewen C L, et al.2015. Gene-edited pigs are protected from porcine reproductive and respiratory syndrome virus[J]. Nature Biotechnology, 34(1): 20. [94] Wu H, Wang Y, Zhang Y, et al.2015. TALE nickase-mediated SP110 knockin endows cattle with increased resistance to tuberculosis[J]. Proceedings of the National Academy of Sciences of the USA, 112(13): E1530. [95] Wyman C, Kanaar R.2006. DNA double-strand break repair: All's well that ends well[J]. Annual Review of Genetics, 40(1): 363. [96] Xie Z X, Mitchell L A, Liu H M, et al.2018. Rapid and Efficient CRISPR/Cas9-Based Mating-Type Switching of Saccharomyces cerevisiae[J]. G3 Genesgenetics, 8(1): 173-183. [97] Yan S, Tu Z, Liu Z, et al.2018. A huntingtin knockin pig model recapitulates features of selective neurodegeneration in Huntington's disease[J]. Cell, 173(4). [98] Yang D, Yang H, Li W, et al.2011. Generation of PPARγ mono-allelic knockout pigs via zinc-finger nucleases and nuclear transfer cloning[J]. Cell Research, 21(6): 979-982. [99] Yao X, Liu Z, Wang X, et al.2018. Generation of knock-in cynomolgus monkey via CRISPR/Cas9 editing[J]. Cell Research, 28(3): 379-382. [100] Yin X, Biswal A K, Dionora J, et al.2017. CRISPR-Cas9 and CRISPR-Cpf1 mediated targeting of a stomatal developmental gene EPFL9 in rice[J]. Plant Cell Reports, 36(5): 745-757. [101] Yu B, Lu R, Yuan Y, et al.2016. Efficient TALEN-mediated myostatin gene editing in goats[J]. Bmc Developmental Biology, 16(1): 26. [102] Zetsche B, Gootenberg J S, Abudayyeh O O, et al.2015. Cpf1 is a single RNA-guided endonuclease of a Class 2 CRISPR-Cas system[J]. Cell, 163(3): 759-771. [103] Zhang X, Li Z, Yang H, et al.2018. Novel transgenic pigs with enhanced growth and reduced environmental impact[J]. Elife, 7. [104] Zhang Y, Qin W, Lu X, et al.2017. Programmable base editing of zebrafish genome using a modified CRISPR-Cas9 system[J]. Nature Communications, 8(1): 118. [105] Zheng Q, Lin J, Huang J, et al.2017. Reconstitution of using CRISPR/Cas9 in the white adipose tissue of pigs decreases fat deposition and improves thermogenic capacity[J]. Proceedings of the National Academy of Sciences of the USA, 114(45): E9474. [106] Zhou X, Xin J, Fan N, et al.2015. Generation of CRISPR/Cas9-mediated gene-targeted pigs via somatic cell nuclear transfer[J]. Cellular & Molecular Life Sciences, 72(6): 1175-1184.