|
|
Characters Comparison and Analysis of Volatile Flavor Compounds Between New Lines and Their Parents in Potato (Solanum tuberosum) |
DUAN Yong-Hong1,*, WANG Tong-Tong1,*, YANG Xin1, SONG Lu-Shuai1,2, XIA Jun-Jun1, YIN Yao-Yao1, SONG Qian-Na1, BAI Xiao-Dong2,**, PENG Suo-Tang1,3,** |
1 College of Agronomy/Key Laboratory of Potato Genetic Improvement and Germplasm Innovation in Shanxi Province, Shanxi Agricultural University, Jinzhong 030600, China; 2 Institute of High Altitude Crop of Shanxi Agricultural University, Datong 037000, China; 3 Shanxi Pengbo Agricultural Science and Technology Co., Ltd., Datong 037000, China |
|
|
Abstract The aroma components of potatoes (Solanum tuberosum) are complex, formed by the combined action of various volatile flavor compounds, and are closely related to the eating quality of potatoes. This study unveiled the difference by comparing the parameters of characteristics between newly breeding lines and their parents, and analyzed the volatile flavor compounds and contents in potato. Three new potato strains (ZS9476-1, ZS9476-2, ZS9476-5) were used as research materials, and their parents ('Zhongshu No.9', '476') as control. The detection and analysis assays were carried out by conventional chromosome spreading method, SSR marker technology, headspace solid-phase microextraction (HS-SPME) and gas chromatography-mass spectrometry (GC-MS). The pollen fertility of new lines ZS9476-1, ZS9476-2, ZS9476-5 were 60.58%, 71.25% and 58.98%, respectively, which were higher than their parents, and suitable for male parents. Chromosome pairing configurations were 2n=4x=48=1.78Ⅰ+12.96Ⅱ+2.22Ⅲ+3.41Ⅳ, 2n=4x=48=2.01Ⅰ+12.63Ⅱ+1.51Ⅲ+4.05Ⅳ, and 2n=4x=48=2.49Ⅰ+12.07Ⅱ+2.15Ⅲ+3.73Ⅳ (Ⅰ~Ⅳare monovalent, divalent, trivalent, and tetravalent, respectively). The new lines ZS9476-2 and ZS9476-5 showed complementary pattern of parents and exhibited superior inheritance, and ZS9476-1 was deletion pattern. A total of 55 volatile flavor compounds were detected in 5 potato genotypes, and there were differences in volatile compounds among different genotypes, there were 25 compounds detected in new line ZS9476-1, 27 compounds in ZS9476-2 and 24 compounds in ZS9476-5, among which aldehydes accounted for the highest proportion and were the main flavor compounds, and 2-methylbutyraldehyde and 4-ethylbenzaldehyde were common compounds among these 5 potato genotypes. There were 13 key aroma substances identified, with the highest content of key aroma substances found in the female parent 'Zhongshu No. 9'. New line ZS9476-5 had the highest contents for 3 key aroma compounds, 4-isopropyl-1,3- cyclohexanediene-1-formaldehyde, dodecenal and 3-hydroxy-2-butanone, which gave nutty malt aroma, fatty aroma, and grassy aroma, and its flavor quality was the best compared with other lines. This study provides theoretical basis and resources for breeding of new potato varieties.
|
Received: 21 August 2024
|
|
Corresponding Authors:
**dxd5561@126.com; 452069088@gq.com
|
About author:: *These authors contributed equally to this work |
|
|
|
[1] 安苗, 王彤彤, 付逸婷, 等. 2023. 52个马铃薯遗传多样性分析及SSR分子身份证构建[J]. 生物技术通报, 39(12): 136-147. (An M, Wang T T, Fu Y T, et al.2023. 52 potato genetic diversity analysis and SSR molecular identity construction[J]. Biotechnology Bulletin, 39(12): 136-147.) [2] 甘霖, 于肖夏, 鞠天华, 等. 2013. 马铃薯杂种F1无性株系的ISSR鉴定[J]. 植物研究, 33(02): 243-247. (Gan L, Yu X X, Ju T H, et al.2013. ISSR identification of F1 clones of potato hybrids[J]. Plant Research, 33(02): 243-247.) [3] 高玉坤, 崔江慧, 项晓冬, 等. 2020. 65个马铃薯品种(系)指纹图谱构建和遗传多样性分析[J]. 农业生物技术学报, 28(08): 1363-1378. (Gao Y K, Cui J H, Xiang X D, et al.2020. Fingerprint construction and genetic diversity analysis for 65 potato (Solanum tuberosum) varieties(lines)[J]. Journal of Agricultural Biotechnology, 28(08): 1363-1378.) [4] 廖琴, 邹奎, 金黎平, 等. 2007. NY/T 1490-2007, 农作物品种审定规范马铃薯[S]. 北京: 农业农村部. (Liao Q, Zou K, Jin L P, et al.2007. NY/T 1490-2007, Regulation for the approval of crop varieties, potato[S]. Beijing : Ministry of Agriculture and Rural Affairs.) [5] 刘登勇, 周光宏, 徐幸莲. 2008. 确定食品关键风味化合物的一种新方法:“ROAV”法[J]. 食品科学, 2008(07): 370-374. (Liu D Y, Zhou G H, Xu X L.2008. A new method for determination of key flavor compounds in foods: “ROAV” method[J]. Food Science, 2008(07): 370-374.) [6] 李长青, 于肖夏, 鞠天华, 等. 2012. 马铃薯杂种F1的SSR鉴定[J]. 西北植物学报, 32(07): 1355-1360. (Li C Q, Yu X X, Ju T H, et al.2012. SSR identification of potato hybrid F1[J]. Journal of Northwest Botany, 32(07) : 1355-1360.) [7] 李建武, 巩迎春. 2015. 马铃薯叶片基因组DNA提取方法比较研究[J]. 甘肃农业科技, (08): 25-28. (Li J W, Gong Y C. 2015. Comparative study on extraction methods of genomic DNA from potato leaves[J] . Gansu Agricultural Science and Technology, (08): 25-28.) [8] 李佳奇, 于卓, 张胜, 等. 2021. 四倍体马铃薯淀粉含量性状相关SSR标记的开发与验证[J]. 农业生物技术学报, 29(08): 1630-1639. (Li J Q, Yu Z, Zhang S, et al.2021. Development and validation of SSR markers related to starch content traits in tetraploid potato (Solanum tuberosum)[J]. Journal of Agricultural Biotechnology, 29(08): 1630-1639.) [9] 李景伟, 于卓, 于肖夏, 等. 2021. 马铃薯优良杂种株系细胞遗传学特性及SRAP分析[J]. 东北师大学报(自然科学版), 53(02): 86-93. (Li J W, Yu Z, Yu X X, et al.2021. Cytogenetics characteristics and SRAP analysis of potato hybrids[J]. Journal of Northeast Normal University (natural science edition), 53(02): 86-93.) [10] 李凯峰, 尹玉和, 王琼, 等. 2021. 不同马铃薯品种挥发性风味成分及代谢产物相关性分析[J]. 中国农业科学, 54(04): 792-803. (Li K F, Yin Y H, Wang Q, et al.2021. Correlation analysis of volatile flavor components and metabolites of different potato varieties[J]. China Agricultural Science, 54(04): 792-803.) [11] 刘琳, 徐健, 姜红, 等. 2022. 生马铃薯和蒸煮马铃薯的风味物质及影响因素[J]. 中国马铃薯, 36(05): 443-457. (Liu L, Xu J, Jiang H, et al.2022. Flavor substances and influencing factors of raw potato and cooked potato[J]. China Potato, 36(05): 443-457.) [12] 刘国敏, 覃维治, 韦荣昌, 等. 2022. 不同品种(系)马铃薯挥发性风味物质对比分析[J]. 食品工业科技, 43(09): 284-292. (Liu G M, Qin W Z, Wei R C, et al.2022. Comparative analysis of volatile flavor compounds in different varieties (lines) of potato[J]. Technology in the Food Industry, 43(09): 284-292.) [13] 李锟, 郭华春. 2023. 255份马铃薯种质晚疫病广谱Rpi基因标记检测及抗性田间验证[J]. 植物遗传资源学报, 24(03): 817-828. (Li K, Guo H C.2023. Detection of broad-spectrum Rpi gene markers and field verification of resistance to late blight in 255 potato germplasm[J]. Acta Plant Genetic Resources, 24(03): 817-828.) [14] 温媛媛, 李妍, 李建国, 等. 2023. 马铃薯条加工副产品与稻草混贮对奶公牛育肥性能和血液生化指标的影响[J]. 中国农业科学, 56(09): 1800-1812. (Wen Y Y, Li Y, Li J G, et al.2023. Effects of by-products of potato chips and rice straw mixed storage on fattening performance and blood biochemical indexes of dairy cows[J]. Chinese Agricultural Sciences, 56(09): 1800-1812.) [15] 徐菊祯, 张梦璐, 何文清, 等. 2023. 中国马铃薯地膜覆盖增产效应及其影响因素的Meta分析[J]. 中国农业科学, 56(15): 2895-2906. (Xu J Z, Zhang M L, He W Q, et al.2023. Meta-analysis of yield-increasing effect of plastic film mulching on potato in China[J]. Chinese Agricultural Sciences, 56(15): 2895-2906.) [16] 杨妍, 马晓军, 王黎瑾. 2007. 马铃薯泥挥发性风味物质研究[J]. 食品科技, (02): 100-105. (Yang Y, Ma X J, Wang L J. 2007. Study on volatile flavor compounds of potato puree[J]. Food Technology, (02): 100-105.) [17] 杨馨月, 张霞, 于卓, 等. 2023. 彩色马铃薯新品系细胞学观测及SSR指纹图谱构建[J]. 种子, 42(11): 93-100. (Yang X Y, Zhang X, Yu Zet al.2023. Cytological observation and SSR fingerprinting of new colored potato lines[J]. Seeds, 42(11): 93-100.) [18] 张自强, 于肖夏, 鞠天华, 等. 2013. 2个马铃薯杂交组合F1的SSR鉴定[J]. 中国生态农业学报, 21(11): 1411-1415. (Zhang Z Q, Yu X X, Ju T H, et al.2013. SSR Identification of two potatoes hybrid combinations F1[J]. Journal of China Ecological Agriculture, 21(11): 1411-1415.) [19] 赵兵, 张敏, 梁杉. 2017. 过度蒸煮对马铃薯风味化合物组成的影响[J]. 食品科学, 38(22): 200-204. (Zhao B, Zhang M, Liang S.2017. Effect of over-cooking on the composition of potato flavor compounds[J]. Food Science, 38(22): 200-204.) [20] 曾著莉, 魏晋梅, 牛黎莉, 等. 2019. HS-SPME-GC-MS分析马铃薯挥发性风味物质[J]. 食品与生物技术学报, 38(06): 123-130. (Zeng Z L, Wei J M, Niu L L, et al.2019. Analysis of volatile flavor compounds in potato by HS-SPME-GC-MS[J]. Journal of Food and Biotechnology, 38(06): 123-130.) [21] 赵娜勤. 2022. 马铃薯杂种F1优良无性株系选育[D]. 硕士学位论文, 内蒙古农业大学, 导师: 马艳红, pp. 37-38. (Zhao N Q.2022. Breeding of elite clonal lines from potato hybrid F1 progeny[D]. Inner Mongolia Agricultural University, Supervisor: Ma Y H, pp. 37-38.) [22] Bough R A, Holm D G, Jayanty S S.2020. Evaluation of cooked flavor for fifteen potato genotypes and the correlation of sensory analysis to instrumental methods[J]. American Journal of Potato Research, 97(1): 63-77. [23] Cremer D R, Eichner K.2000. The reaction kinetics for the formation of Strecker aldehydes in low moisture model systems and in plant powders[J]. Food Chemistry, 71(1): 37-43. [24] Choudhary A, Wright L, Ponce O, et al.2020. Varietal variation and chromosome behaviour during meiosis in Solanum tuberosum[J]. Heredity (Edinb), 125(4): 212-226. [25] Chen Y, Li P, Liao L, et al.2021. Characteristic fingerprints and volatile flavor compound variations in Liuyang Douchi during fermentation via HS-GC-IMS and HS-SPME-GC-MS[J]. Food Chemistry, 9(1): 130-135. [26] Duckham S C, Dodson A T, Bakker J, et al.2002. Effect of cultivar and storage time on the volatile flavor components of baked potato[J]. Journal of Agricultural and Food Chemistry, 50(20): 5640-5648. [27] Feng Y Z, Cai Y, Fu X, et al.2018. Comparison of aroma-active compounds in broiler broth and native chicken broth by aroma extract dilution analysis (AEDA), odor activity value (OAV) and omission experiment[J]. Food Chemistry, 26(5): 274-280. [28] Feng T, Yang M Y, Ma B, et al.2020. Volatile profiles of two genotype Agaricus bisporus species at different growth stages[J]. Food Research International, 20(20): 109-761. [29] Guo X, Xie C, Cai X, et al.2010. Meiotic behavior of pollen mother cells in relation to ploidy level of somatic hybrids between Solanum tuberosum and S. chacoense[J]. Plant Cell Reports, 29(11): 1277-85. [30] Hu W, Zhang L, Li P, et al.2014. Characterization of volatile components in four vegetable oils by headspace two-dimensional comprehensive chromatography time-of-flight mass spectrometry[J]. Talanta, 129: 629-635. [31] Islam M M, Naznin S, Naznin A, et al.2022. Dry matter, starch content, reducing sugar, color and crispiness are key parameters of potatoes required for chip processing[J]. Horticulturae, 8(5): 362. [32] Jiang H, Duan W, Zhao Y, et al.2023. Development of a flavor fingerprint using HS-GC-IMS for volatile compounds from steamed potatoes of different varieties[J]. Foods, 12(11): 2252. [33] Larrosa F H, Maune J F, Erazzú L E, et al.2012. Meiotic abnormalities underlying pollen sterility in wild potato hybrids and spontaneous populations[J]. Plant Biology (Stuttg), 14(1): 223-233. [34] Morris W L, Shepherd T, Verrall S R, et al.2010. Relationships between volatile and non-volatile metabolites and attributes of processed potato flavor[J]. Phytochemistry, 71(14): 1765-1773. [35] Morris W L, Taylor M A.2019. Improving flavor to increase consumption[J]. American Journal of Potato Research, 96(2): 195-200. [36] Oruna-Concha M J, Bakker J, Ames J.2002. Comparison of the volatile components of two cultivars of potato cooked by boiling, conventional baking and microwave baking[J]. Journal of the Science of Food and Agriculture, 82(9): 1080-1087. [37] Peksa A, Miedzianka J, Nems A, et al.2021. The free-amino-acid content in six potatoes cultivars through storage[J]. Molecules, 26(5): 1322. |
|
|
|