|
|
Pyramiding of Stripe Rust-resistant Genes and Development of Resistant Wheat (Triticum aestivum) Cultivars for Stripe Rust |
MA Rui, HE Rui, GUO Ying, ZHAN Zong-Bing, ZHANG Wen-Tao, DU Jiu-Yuan, BAI Bin* |
Wheat Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China |
|
|
Abstract The Longdong region of Gansu Province, adjacent to China's wheat (Triticum aestivum) stripe rust oversummering inoculum reservoir (Longnan Region), serves not only as a high-incidence area for the disease but also as a key transmission corridor to eastern wheat production zones, posing a severe threat to local wheat production security. Pyramiding resistance genes to develop wheat varieties with durable resistance is the most economical and effective green control strategy to control the disease's epidemics in this area. This study crossed the slow-rusting wheat line 'Longyuan 932' with the highly stripe rust-resistant cultivar 'Lantian 15', and pyramided the resistance genes Yr29, Yr30, and YrZH84 through pedigree breeding combined with molecular marker-assisted selection. Two new winter wheat varieties, 'Lantian 133' and 'Lantian 134', were developed. These varieties exhibited seedling-stage immunity to the high-toxic race of stripe rust CYR33 (but susceptibility to CYR34), and exhibited high resistance to mixed pathogen populations at adult-plant stage, and demonstrated adaptability for cultivation in Gansu Province and Ningxia. The development of new wheat varieties with pyramided disease-resistant genes holds significant importance for sustainable control of wheat stripe rust in Gansu Province, and also provides elite parental lines for breeding durable resistance cultivars in China.
|
Received: 11 September 2024
|
|
Corresponding Authors:
*baibingaas@gsagr.cn
|
|
|
|
[1] 白斌, 张怀志, 杜久元, 等. 2024. 西北条锈菌源区冬小麦育种抗条锈病基因的利用现状与策略[J]. 中国农业科学, 57(01): 4-17. (Bai B, Zhang H Z, Dd J Y, et al.2024. Current situation and strategy of stripe rust resistance genes untilization in winter wheat cultivars of northwestern oversummering region for Puccinia striiformis f. sp. tritici in china[J]. Scientia Agricultura Sinica, 57(01): 4-17.) [2] 白斌, 杜久元, 何瑞, 等. 2023. 成株抗性与全生育期抗性基因聚合培育抗条锈性小麦新品种[J]. 植物保护, 49(06): 47-54. (Bai B, Du J Y, He R, et al.2023. Developing Yr-resistant wheat (Triticum aestivum L.) cultivar and line with pyramiding of adult-plant resistance and all stage resistant genes[J]. Plant Protection, 49(06):47-54.) [3] 陈万权, 康振生, 马占鸿, 等. 2013. 中国小麦条锈病综合治理理论与实践[J]. 中国农业科学, 46(20): 4254-4262. (Chen W Q, Kang Z S, Ma Z H, et al.2013. Integrated management of wheat stripe rust caused by Puccinia striiformis f. sp. tritici in china[J]. Scientia Agricultura Sinica, 46(20): 4254-4262.) [4] 董纯豪, 李俣佳, 唐建卫, 等. 2023. 周8425B抗叶锈病基因LrZH84和LrZH22/Lr13在其衍生品种中的遗传解析[J]. 河南农业大学学报, 57(06): 897-906. (Dong C H, Li Y J, Tang J W, et al.2023. Genetic analysis of Zhou8425B leaf rust resistance gene LrZH84 and LrZH22/Lr13 in their derivative varieties[J]. Journal of Henan Agricultural University, 57(06): 897-906.) [5] 高月, 郭秀林, 赵敏, 等. 2022. 分子标记辅助选择创制小麦抗白粉病基因聚合体[J].河北农业科学, 26(05): 66-69. (Gao Y, Guo X L, Zhao M, et al.2022. Creation of pyramids of wheat powdery mildew resistance genes by marker-assissted selection[J]. Jouranl of Hebei Agricultural Sciences, 26(05): 66-69.) [6] 何中虎, 兰彩霞, 陈新民, 等. 2011. 小麦条锈病和白粉病成株抗性研究进展与展望[J]. 中国农业科学, 44(11): 2193-2215. (He Z H, Lan C X, Chen X M, et al.2011. Progress and perspective in research of adult-plant resistanceto stripe rust and powdery mildew in wheat[J]. Scientia Agricultura Sinica, 44(11): 2193-2215.) [7] 胡朝月, 王凤涛, 郎晓威, 等. 2022. 小麦抗条锈病基因对中国条锈菌主要流行小种的抗性分析[J]. 中国农业科学, 55(03): 491-502. (Hu C Y, Wang F T, Lang X W, et al.2022. Resistance analyses on wheat stripe rust resistance genes to the predominant races of Puccinia striiformis f. sp. tritici in china[J]. Scientia Agricultura Sinica, 55(03): 491-502.) [8] 黄冲, 姜玉英, 李春广. 2020. 1987年-2018年我国小麦主要病虫害发生危害及演变分析[J]. 植物保护, 46(6): 186-193. (Huang C, Jiang Y Y, Li C G.2020. Occurrence, yield loss and aynamics of wheat diseases and insect pests in china from 1987 to 2018[J]. Plant Protection, 46(6): 186-193.) [9] 李俣佳, 许豪, 于士男, 等. 2024. 小麦骨干亲本周8425B抗条锈病优异基因在其衍生品种中的遗传解析[J]. 作物学报, 50(01): 16-31. (Li Y J, Xu H, Yu S N, et al.2024. Genetic analysis of elite stripe rust resistance genes of founder parent Zhou 8425B in its derived varieties[J]. Acta Agronomica Sinica, 50(01): 16-31.) [10] 刘志勇, 张怀志, 白斌, 等. 2024. 中国小麦抗条锈病基因育种利用现状与策略[J].中国农业科学, 57(01): 34-51. (Liu Z Y, Zhang H Z, Bai B, et al.2024. Current status and strategies for utilization of stripe rust resistance genes in wheat breeding program of China[J]. Scientia Agricultura Sinica, 57(01): 34-51.) [11] 庞云星, 崔宏梅, 蔺瑞明,等. 2021. 89份河北、山西小麦品种抗条锈性评价及抗条锈病基因检测[J]. 植物保护, 47(06): 49-57. (Pang Y X, Cui H M, Lin R M, et al.2021. Resistance evaluation and detection of the resistance genes in 89 wheat cultivars from Hebei and Shanxi provinces to stripe rust[J]. Plant Protection, 47(06): 49-57.) [12] 阳霞, 简俊涛, 朱传杰, 等. 2014. 小麦抗病基因Lr68和Sr2/Yr30的遗传特性分析[J]. 麦类作物学报, 34(02): 151-156. (Yang X, Jian J T, Zhu C J, et al.2014. Genetic characteristic of wheat rust resistance Lr68 and Sr2/Yr30[J]. Journal of Triticeae Crops, 34(02): 151-156.) [13] 张学飞, 陈建雄, 刘耀霞, 等. 2022. 44份青海小麦品种(系)抗条锈性评价及抗条锈病基因检测[J]. 西北农林科技大学学报(自然科学版), 50(11): 101-109. (Zhang X F, Chen J X, Liu Y X, et al.2022. Stripe rust resistance evaluation and gene detection of 44 wheat varieties (lines) in qinghai[J]. Journal of northwest A&F University (Nat. Sci. Ed.), 50(11): 101-109.) [14] 曾庆东, 沈川, 袁凤平, 等. 2015. 小麦抗条锈病已知基因对中国当前流行小种的有效性分析[J]. 植物病理学报, 45(6): 641-650. (Zeng Q D, Shen C, Yuan F P, et al.2015. The resistance evaluation of the Yr Genes to the main prevalent pathotypes of Puccinia striiformis f.sp.tritici in China[J]. Acta Phytopathologica Sinica, 45(6): 641-650.) [15] 张一铎, 李国强, 孔忠新, 等. 2022. 基因聚合选育抗赤霉病小麦新品系百农4299[J]. 作物学报, 48(09): 2221-2227. (Zhang Y D, Li G Q, Kong Z X, et al.2022. Breeding of FHB-resistant wheat line Bainong 4299 by gene pyramiding[J]. Acta Agronomica Sinica, 48(09): 2221-2227.) [16] Bai B, Nan R, Xian-Chun X, et al.2012. Mapping of quantitative trait loci for adult plant resistance to stripe rust in german wheat cultivar "Ibis"[J]. Journal of Integrative Agriculture, 11(4): 9. [17] Bai B, Li Z, Wang H Mi, et al.2022. Genetic analysis of adult plant resistance to stripe rust in common wheat cultivar "Pascal"[J]. Fronties in Plant Science, 6(13): 918437. [18] Crossa J, Burgueno J, Dreisigacker S, et al.2007. Association analysis of historical bread wheat germplasm using additive genetic covariance of relatives and population structure[J]. Genetics, 177(3): 1889-1913. [19] Francis H A, Leitch A R, Koebner, et al.1995. Conversion of a RAPD-generated PCR product, containing a novel dispersed repetitive element, into a fast and robust assay for the presence of rye chromatin in wheat[J]. Theoretical and Applied Genetics, 90(5): 636-642. [20] Huerta-espino J, Singh R, Crespo-herrera L A, et al.2020. Adult plant slow rusting genes confer high levels of resistance to rusts in bread wheat ultivars from mexico[J]. Frontier in Plant Science, 11: 824. [21] Klymiuk V, Chawla H S, Wiebe K, et al.2022. Discovery of stripe rust resistance with incomplete dominance in wild emmer wheat using bulked segregant analysis sequencing[J]. Communications Biology, 5: 826. [22] Lan C X, Liang S S, Zhou X C, et al.2010. Identification of genomic regions controlling adult-plant stripe rust resistance in chinese landrace Pingyuan 50 through bulked segregant analysis[J]. Phytopathology, 100(4): 313-318. [23] Li Z F, Zheng T C, He Z H, et al.2006. Molecular tagging of stripe rust resistance gene YrZH84 in chinese wheat line Zhou 8425B[J]. Theoretical and Applied Genetics, 112(6): 1098-1103. [24] Li G, Ren Y, Yang Y, et al.2025. Genomic analysis of Zhou8425B, a key founder parent, reveals its genetic contributions to elite agronomic traits in wheat breeding[J]. Plant Communications, 6(3): 101222-101241. [25] Mago R, Brown-Guedira G, Dreisigacker S, et al.2010. An accurate DNA marker assay for stem rust resistance gene Sr2 in wheat[J]. Theoretical and Applied Genetics, 122(4): 735-744. [26] Mcintosh R A, D ubcovsky J, Rogers W J, et al.2021. Catalogue of gene symbols for wheat: 2021 supplement[J]. Annual Wheat Newsletter, 67: 104-113. [27] Mcintosh R A, Wellings C R, Park R F.1995. Wheat Rusts: An Atlas of Resistance Genes[M]. CSIRO Press, Victoria, Australia, pp. 136-145. [28] Mcintosh R A, Mu J, Han D J, et al.2018. Wheat stripe rust resistance gene Yr24/Yr26: A retrospective review[J]. The Crop Journal, 6(4): 321-329. [29] Rani R, Singh R, Yadav N R.2019. Evaluating stripe rust resistance in indian wheat genotypes and breeding lines using molecular markers[J]. Comptes Rendus Biologies, 342(5-6): 154-174. [30] Sánchez-Martín J, Keller B.2021. NLR immune receptors and diverse types of non-NLR proteins control race-specific resistance in Triticeae[J]. Current Opinion in Plant Biology, 62(8): 102053. [31] Tkein K,Cat A, AkanK, Catal M, et al.2021. A New virulent race of wheat stripe rust pathogen (Puccinia striiformis f. sp. tritici) on the resistance gene Yr5 inturkey[J]. Plant Disease, 105(10): 2749-3284. [32] Wellings C R.2011. Global status of stripe rust: A review of historical and current threats[J]. Euphytica, 179: 129-141. [33] Zhang H, Zhang L.2016. Molecular mapping and marker development for the triticum dicoccoides-derived stripe rust resistance gene YrSM139-1B in bread wheat cv. Shanmai 139[J]. Theoretical and Applied Genetics, 129(2): 369-376. [34] Zhang P, Li X, Gebrewahid T W, et al.2019. QTL mapping of adult-plant resistance to leaf and stripe rust in wheat cross SW 8588/Thatcher using the wheat 55K SNP array[J]. Plant Disease, 103(12): 3041-3049. |
|
|
|