|
|
Study on Soil Bacterial Community Diversity and Composition in Qiongying Mountain Ancient Tea Plantation |
YAN Xing, YANG Xiong-Wei, CUI Shi-Fang, HUANG Xiao-Xia* |
College of Landscape Architecture/Southwest Landscape Architecture Engineering Research Center of State Forestry and Grassland Administration, Southwest Forestry University, Kunming 650224, China |
|
|
Abstract As a rare natural heritage site, the ancient tea plantation of Qiongying mountain holds significant ecological, cultural, and economic value. Its sustainable development is inseparable from a healthy soil micro-ecological environment. To investigate the structural characteristics of soil bacterial communities in the ancient tea plantation of Qiongying mountain, Fengqing county, Yunnan province, this study focused on the rhizosphere and bulk soils of the ancient tea plantation on Qiongying Mountain. Using 16S rRNA gene amplicon sequencing technology, the diversity and structural characteristics of the soil bacterial communities and their relationship with soil chemical properties were analyzed. The results showed that: (1) Alpha diversity analysis indicated the bacterial community abundances in the rhizosphere and bulk soils of the valley were significantly higher than that in the rhizosphere and bulk soils of the mountaintop; there were no significant differences in the abundance or diversity of bacterial communities between rhizosphere and bulk soils at the mountaintop and valley. (2) The dominant phyla were Acidobacteriota (21.15%~26.76%) and Proteobacteria (15.06%~20.79%), and the dominant genera were Candidatus_Solibacter (2.6%~3.6%), Acidibacter (2.6%~3.4%) and Bryobacter (2.2%~2.6%). (3) Beta diversity analysis showed that the composition and structure of bacterial communities were similar but had certain differences. (4) Redundancy analysis (RDA) showed that soil organic matter was the main environmental factor affecting the composition and structure of bacterial community in rhizosphere soil. In conclusion, this study preliminarily explored the characteristics of the bacterial community structure in the rhizosphere and bulk soils of ancient tea trees at the mountaintop and valley of the Qiongying Mountain tea plantation. These findings can provide a reference basis for the protection and utilization of ancient tea trees in tea plantations.
|
Received: 08 January 2024
|
|
Corresponding Authors:
*huangxx@swfu.edu.cn
|
|
|
|
[1] 鲍士旦. 2000. 土壤农化分析[M]. 3版, 北京: 中国农业出版社, pp. 25-114. (Bao S D.2000. Soil Agro-chemistry Analysis[M]. 3rd edition, China Agriculture Press, Bei jing. pp. 24-114.) [2] 陈梅春, 朱育菁, 刘波, 等. 2018. 基于宏基因组茉莉花植株土壤细菌多样性研究[J]. 农业生物技术学报, 26(09): 1480-1493. (Chen M C, Zhu Y Q, Liu B, et al.2018. Diversity research of the soil bacteria of Jasminum sambac Ait based on metagenome[J]. Journal of Agricultural Biotechnology, 26(09): 1480-1493.) [3] 陈义勇, 黎健龙, 周波, 等. 2023. 鼠茅草间作对茶园土壤及茶叶品质成分的影响[J]. 中国农业科学, 56(24): 4916-4929. (Chen Y Y, Li J L, Zhou B, et al.2023. Effects of intercropping with Vulpia myuros in tea plantation on soil and tea quality components[J]. Scientia Agricultura Sinica, 56(24): 4916-4929.) [4] 杜思瑶, 于淼, 刘芳华, 等. 2017. 设施种植模式对土壤细菌多样性及群落结构的影响[J]. 中国生态农业学报, 25(11): 1615-1625. (Du S Y, Yu M, Liu F H, et al.2017. Effect of facility management regimes on soil bacterial diversity and community structure[J]. Chinese Journal of Eco-Agriculture, 25(11): 1615-1625.) [5] 龚高芬, 窦峥嵘, 周国军, 等. 2023. 高寒特境中甸黄芪植物根际微生物物种多样性及其抗生物膜活性成分[J]. 微生物学报, 63(10): 3967-3986. (Gong G F, Dou Z R, Zhou G J, et al.2023. Species diversity and anti-biofilm components of rhizosphere microorganisms derived from Astragalus forrestii in special high-cold environments[J]. Acta Microbiologica Sinica, 63(10): 3967-3986.) [6] 郝连奇, 浦绍柳, 范承胜, 等. 2019. 云南勐海县主要古茶园土壤养分状况分析[J]. 西南农业学报, 32(7): 1621-1625. (Hao L Q, Pu S L, Fan C S, et al.2019. Analysis of soil nutrient status of main ancient tea garden in Menghai county, Yunnan province[J]. Southwest China Journal of Agricultural Sciences, 32(7): 1621-1625.) [7] 李慧敏, 田胜营, 李丹丹, 等. 2021. 有机物料施用对潮土活性有机碳及微生物群落组成的影响[J]. 土壤学报, 58(03): 777-787. (Li H M, Tian S Y, Li D D, et al.2021. Effect of application of organic materials on content of labile organic carbon and composition of microbial community in fluvio-aquatic soil[J]. Acta Pedologica Sinica, 58(03): 777-787.) [8] 李媛媛, 徐婷婷, 艾喆, 等. 2023. 不同海拔鬼箭锦鸡儿根际和非根际土壤细菌群落多样性及PICRUSt功能预测[J]. 环境科学, 44(04): 2304-2314. (Li Y Y, Xu T T, Ai Z, et al.2023. Diversity and predictive functional of Caragana jubata bacterial community in rhizosphere and non-rhizosphere soil at different altitudes[J]. Environmental Science, 44(04): 2304-2314.) [9] 刘福童, 李茂森, 闫超超, 等. 2023. 烤烟连作条件下土壤微生物群落结构变化及驱动因素分析[J]. 华中农业大学学报, 42(02): 139-146. (Liu F T, Li M S, Yan C C, et al.2023. Structural changes and driving factors of soil microbial communities under flue-cured tobacco continuous cropping[J]. Journal of Huazhong Agricultural University, 42(02): 139-146.) [10] 刘美雅, 伊晓云, 石元值, 等. 2015. 茶园土壤性状及茶树营养元素吸收、转运机制研究进展[J]. 茶叶科学, 35(02): 110-120. (Liu M Y, Yi X Y, Shi Y Z, et al.2015. Research progress of soil properties in tea gardens and the absorption and translocation mechanisms of nutrients and other elements in tea plant[J]. Journal of Tea Science, 35(02): 110-120.) [11] 刘艳娇, 刘庆, 贺合亮, 等. 2023. 亚高山粗枝云杉人工林土壤原核微生物群落结构与功能变化[J]. 应用生态学报, 34(12): 3279-3290. (Liu Y J, Liu Q, He H L, et al.2023. Change in the structure and function of soil prokaryotic communities in subalpine Picea asperata plantation[J]. Chinese Journal of Applied Ecology, 34(12): 3279-3290.) [12] 罗嘉润, 宋文杰, 刘伟, 等. 2023. 秸秆还田配施氮肥早期对水稻生长、土壤性质及微生物多样性的影响[J].农业生物技术学报, 31(10): 2019-2034. (Luo J R, Song W J, Liu W, et al.2023. Effects of straw returning and nitrogen fertilizer application on rice (Oryza sativa) growth, Soil Properties and microbial diversity in the early stage[J]. Journal of Agricultural Biotechnology, 31(10): 2019-2034.) [13] 庞丹波, 吴梦瑶, 赵娅茹, 等. 2023. 贺兰山东坡不同海拔土壤微生物群落特征及其影响因素[J]. 应用生态学报, 34(07): 1957-1967. (Pang D B, Wu M Y, Zhao Y R, et al.2023. Soil microbial community characteristics and its influencing factors at different elevations on the eastern slope of Helan mountain, Northwest China[J]. Chinese Journal of Applied Ecology, 34(07): 1957-1967.) [14] 浦滇, 石明, 周雪孟, 等. 2022. 基于高通量绝对定量对不同树龄茶树土壤细菌群落多样性的研究[J]. 西南农业学报, 35(01): 186-193. (Pu D, Shi M, Zhou X M, et al.2022. Soil bacterial community diversity of tea plants with different ages based on high-throughput absolute quantification[J]. Southwest China Journal of Agricultural Sciences, 35(01): 186-193.) [15] 孙倩, 吴宏亮, 陈阜, 等. 2020. 基于高通量测序的几种不同作物根际土壤细菌群落结构和多样性分析[J]. 农业生物技术学报, 28(08): 1490-1498. (Sun Q, Wu H L, Chen F, et al.2020. Analysis of bacterial community structure and diversity in rhizosphere soil of several different crops based on high-throughput sequencing[J]. Journal of Agricultural Biotechnology, 28(08): 1490-1498.) [16] 唐小艳, 吴兴兴, 龚雨茂, 等. 2022. 云南古茶树资源保护现状研究[J]. 福建茶叶, 44(03): 275-277. (Tang X Y, WU X X, Gong Y M, et al.2022. Research on the conservation status of ancient tea resources in Yunnan[J]. Tea in Fujian, 44(03): 275-277.) [17] 王伏伟, 王晓波, 李金才, 等. 2015. 施肥及秸秆还田对砂姜黑土细菌群落的影响[J]. 中国生态农业学报, 23(10): 1302-1311. (Wang F W, Wang X B, Li J C, et al.2023. Effects of fertilization and straw incorporation on bacterial communities in lime concretion black soil[J]. Chinese Journal of Eco-Agriculture, 23(10): 1302-1311.) [18] 王国才, 尹世华, 耿芳, 等. 2023. 云南省琼英山茶园根际与非根际土壤养分与胞外酶活性特征分析[J/OL].分子植物育种: 1-16. (Wang G C, Yin S H, Geng F.2023. Analysis of soil nutrients and extracellular enzyme activities of rhizosphere and bulk soils at tea plantation in Qiongying Mountain, Fengqing County, Yunnan Province[J/OL]. Molecular Plant Breeding: 1-16.) [19] 王明涛, 赵玉红, 苗彦军, 等. 2023. 藏北一年生人工草地弃耕不同年限的土壤微生物群落特征研究[J]. 中国草地学报, 45(07): 100-109. (Wang M T, Zhao Y H, Miao Y J, et al.2023. Study on soil microbial community characteristics of annual artificial grassland abandoned for different years in northern Tibet[J]. Chinese Journal of Grassland, 45(07): 100-109.) [20] 王楠, 钱少郁, 潘小承, 等. 2023. 模拟酸雨及氮沉降对马尾松林土壤细菌群落结构及其多样性的影响[J]. 环境科学, 44(04): 2315-2324. (Wang N, Qian S Y, Pan X C, et al.2023. Effects of simulated acid rain and nitrogen deposition on soil bacterial community structure and diversity in the masson pine forest[J]. Environmental Science, 44(04): 2315-2324.) [21] 王钰, 潘媛, 伍晓丽, 等. 2021. 不同种植模式下黄连根际土壤理化特性及细菌群落结构变化[J]. 中国中药杂志, 46(03): 582-590. (Wang Y, Pan Y, Wu X L, et al.2021. Variation in physicochemical properties and bacterial community structure in rhizosphere soil of Coptis chinensis tow cropping modes[J]. China Journal of Chinese Materia Medica, 46(03): 582-590.) [22] 杨广容, 马燕, 蒋宾, 等. 2019. 基于16S rDNA测序对茶园土壤细菌群落多样性的研究[J]. 生态学报, 39(22): 8452-8461. (Yang G R, Ma Y, Jiang B, et al.2019.Analysis of the bacterial community and diversity in tea plantation soil via 16S rDNA sequencing[J]. Acta Ecologica Sinica, 2019, 39(22): 8452-8461.) [23] 杨雄伟, 刘娇, 侯孟月, 等. 2023. 凤庆县不同古茶园根际与非根际土壤酶活性及其化学计量特征[J]. 应用与环境生物学报, 29(06): 1418-1425. (Yang X W, Liu J, Hou M Y, et al.2023. Enzyme activities and stoichiometric characteristics of rhizometric and non-rhizosphere soil in different ancient tea gardens in Fengqing county[J]. Chinese Journal of Applied and Environmental Biology, 29(06): 1418-1425.) [24] 张帅, 户杉杉, 潘荣艺, 等. 2019. 茶园土壤酸化研究进展[J]. 茶叶, 45(01): 17-23. (Zhang S, Hu S S, Pan R Y, et al.2019. Research progress on soil acidification of tea garden[J]. Journal of Tea, 45(01): 17-23.) [25] 张尧, 陈岚, 王洁莹, 等. 2023. 太白山不同海拔森林根际土壤微生物碳利用效率差异性及其影响因素[J]. 植物生态学报, 47(02): 275-288. (Zhang Y, Chen L, Wang J Y, et al.2022. Differences and influencing factors of microbial carbon use efficiency in forest rhizosphere soils at different altitudes in Taibai mountain, China[J]. Chinese Journal of Plant Ecology, 47(02): 275-288.) [26] 张毅, 杨文浩, 周碧青, 等. 2023. 炭基肥对酸化茶园土壤细菌和真菌数量及群落结构的影响[J]. 福建农林大学学报(自然科学版), 52(02): 247-257. (Zhang Y, Yang W H, Zhou B Q, et al.2023. Effects of carbon-based fertilizer on the number and community structure of bacteria and fungi in acidified tea garden soil[J]. Journal of Fujian Agriculture and Forestry University(Natural Science Edition), 52(02): 247-257.) [27] 赵学强, 潘贤章, 马海艺, 等. 2023. 中国酸性土壤利用的科学问题与策略[J]. 土壤学报, 60(05): 1248-1263. (Zhao X Q, Pan X Z, Ma H Y, et al.2023. Scientific issues and strategies of acid soil use in China[J]. Acta Pedologica Sinica, 60(05): 1248-1263.) [28] 郑海峰, 陈亚梅, 杨林, 等. 2017. 高山林线土壤微生物群落结构对模拟增温的响应[J]. 应用生态学报, 28(09): 2840-2848. (Zheng H F, Chen Y M, Yang L, et al.2017. Responses of soil microbial community structure to simulated warming in alpine timberline in western Sichuan, China[J]. Chinese Journal of Applied Ecology, 28(09): 2840-2848.) [29] 自海云, 姜永雷, 程小毛, 等. 2020. 千家寨不同海拔野生古茶树根际土壤微生物胞外酶活性特征[J].应用与环境生物学报, 26(05): 1087-1095. (Zi H Y, Jiang Y L, Chen X M, et al.2020. Microbial extracellular enzyme activity in the rhizosphere soil of ancient wild tea trees at different altitudes in the Qianjiazhai Reserve[J]. Chinese Journal of Applied and Environmental Biology, 26(05): 1087-1095.) [30] Baudoin E, Benizri E, Guckert A.2003. Impact of artificial root exudates on the bacterial community structure in bulk soil and maize rhizosphere[J]. Soil Biology and Biochemistry, 35(9): 1183-1192. [31] Chen W Y, Yu T F, Zhao C G, et al.2023. Development and determinants of topsoil bacterial and fungal communities of afforestation by aerial sowing in Tengger desert, China[J]. Journal of Fungi (Basel, Switzerland), 9(4): 399. [32] Cui Y X, Bing H J, Fang L C, et al.2019. Diversity patterns of the rhizosphere and bulk soil microbial communities along an altitudinal gradient in an alpine ecosystem of the eastern Tibetan plateau[J]. Geoderma. 338: 118-127. [33] Edgar R C.2013. UPARSE: highly accurate OTU sequences from microbial amplicon reads[J]. Nature Methods, 10(10): 996-998. [34] Engelhardt I C, Welty A, Blazewicz S J, et al.2018. Depth matters: effects of precipitation regime on soil microbial activity upon rewetting of a plant-soil system[J]. The ISME Journal, 12(4): 1061-1071. [35] Fan M S, Rattan L, Cao J, et al.2013. Plant-based assessment of inherent soil productivity and contributions to China's cereal crop yield increase since 1980[J]. PLOS ONE, 8(9): e74617. [36] Haas B J, Gevers D, Earl A M, et al.2011. Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons[J]. Genome Research, 21(3), 494-504. [37] Jiang L, He Z S, Liu J F, et al.2019. Elevation gradient altered soil C, N, and P stoichiometry of Pinus taiwanensis forest on Daiyun Mountain[J]. Forests, 10(12): 1089. [38] Li T, Zhang S, Hu J M, et al.2023. Soil sample sizes for DNA extraction substantially affect the examination of microbial diversity and co-occurrence patterns but not abundance[J]. Soil Biology and Biochemistry, 177: 108902. [39] Magill H A, Aber D J.2000. Variation in soil net mineralization rates with dissolved organic carbon additions[J]. Soil Biology and Biochemistry, 32(5): 597-601. [40] Magoč T, Salzberg S L.2011. FLASH: Fast length adjustment of short reads to improve genome assemblies[J]. Bioinformatics (Oxford, England), 27(21): 2957-2963. [41] Phillips R P, Meier I C, Bernhardt E S, et al.2012. Roots and fungi accelerate carbon and nitrogen cycling in forests exposed to elevated CO2[J]. Ecology Letters, 15(9): 1042-1049. [42] Riley D, Barber S A.1970. Salt accumulation at the soybean (Glycine max (L.) Merr.) root-soil interface[J]. Soil Science Society Of America Journal, 34(1): 154-155. [43] Shi Y, Li Y T, Xiang X J, et al.2018. Spatial scale affects the relative role of stochasticity versus determinism in soil bacterial communities in wheat fields across the north China plain[J]. Microbiome, 6(1): 27. [44] Tucker C L, Bell J, Pendall E, et al.2013. Does declining carbon-use efficiency explain thermal acclimation of soil respiration with warming?[J]. Global Change Biology, 19(1): 252-263. [45] Wang J, Lu H F, Lin Y B, et al.2021. Dynamics of community structure and bio-thermodynamic health of soil organisms following subtropical forest succession[J]. Journal of Environmental Management, 280: 111647. [46] Wight W.1959. Nomenclature and classification of tea plant[J]. Nature, 183: 1726-1728. [47] Zhang Y, Li J T, Xu X, et al.2023. Temperature fluctuation promotes the thermal adaptation of soil microbial respiration[J]. Nature Ecology and Evolution, 7(2): 205-213. [48] Zhou X Q, Chen C G, Wang Y F, et al.2013. Soil extractable carbon and nitrogen, microbial biomass and microbial metabolic activity in response to warming and increased precipitation in a semiarid Inner Mongolian grassland[J]. Geoderma, 206: 24-31. |
[1] |
NIU Li-Li, WU Yun-Long, LIU Li-Yuan, SONG Yang-Bo, CAO Hong-Yan, DU Ting-Ting, WANG Sheng-Jie, XI Lin, YANG Qing, MENG Dong, ZHOU Hui, HE Kun-Zu. Identification of microRNA in 'Xinyu' Grape (Vitis vinifera) and Its Response Analysis to High Temperature Stress[J]. 农业生物技术学报, 2024, 32(9): 2009-2020. |
|
|
|
|