|
|
Development and Application of Molecular Marker for Grain Length Gene GW7 in Rice (Oryza sativa) |
ZHENG Guo-Li1, GU Qiao-Mei1, DU Ming1, FANG Yu1,2, WANG Pan1,* |
1 Shanghai ZKW Molecular Breeding Technology Co., Ltd., Shanghai 200030, China; 2 Anhui Win-all Hi-tech Seed Co., Ltd., Hefei 230088, China |
|
|
Abstract Rice (Oryza sativa) grain length is an important agronomic trait, which is closely related to rice yield and appearance quality. In order to further explore new molecular markers for improving rice grain length, this study developed a fluorescent molecular markers of GW7 (Gene ID: 10208) gene based on the single base mutation of GW7 gene in the functional region, combined with penta-primer amplification refractory mutation system (PARMS). Combined with grain length phenotype and PCR product sequencing, the detection results of the marker in 13 rice parent materials showed that the marker could accurately identify different GW7 genotypes. Then, 16 homozygous GW7 genotypes were selected from 94 rice materials by using this marker. The results of marker-assisted selection showed that excellent rice materials with increased grain length could be obtained in F2 generation of 'R91' and 'zhuo20'. The marker this study developed can help to selecte individual plants with target traits at the seedling stage, and perform cross-breeding and backcrossing during the flowering period, without having to wait until maturity and harvest thereby accelerating the breeding process for rice grain quality traits.
|
Received: 09 November 2023
|
|
Corresponding Authors:
* wp@zkwbreeding.com
|
|
|
|
[1] 陈春, 郭新亚, 王磊, 等. 2022. 利用GS9粒型基因分子标记改良水稻粒型的效应研究[J]. 江西农业学报, 34(2): 15-19. (Chen C, Guo X Y, Wang L, et al.2022. Improve-ment of rice grain shape by functional molecular marker of GS9 gene[J]. Acta Agriculturae Jiangxi, 34(2): 15-19.) [2] 邓钊, 王凯, 杜波, 等. 2023. 水稻抗褐飞虱基因Bph43紧密连锁KASP标记开发与验证[J]. 湖北农业科学, 62(6): 169-174. (Deng Z, Wang K, Du B, et al.2023. Development and validation of a tightly linked KASP marker for the rice brown planthopper resistance gene Bph43[J].Hubei Agricultural Sciences, 62(6): 169-174.) [3] 方珊茹, 吴春珠, 刘玉芹, 等. 2013. 分子标记辅助选择改良Ⅱ-32B的外观品质[J]. 分子植物育种, 11(6): 673-679. (Fang S R, Wu C Z, Liu Y Q, et al.2013. Molecular marker-assisted selection for improving appearance quality of Ⅱ-32B[J]. Molecular Plant Breeding, 11(6): 673-679.) [4] 郭发平, 田敏, 白大嵩, 等. 2023. 水稻氮高效基因OsTCP19分子标记的开发利用[J]. 农业生物技术学报, 31(8): 1747-1756. (Guo F P, Tian M, Bai D S, et al.2023. Development and application of molecular marker for high nitrogen use efficiency gene OsTCP19 in rice (Oryza sativa)[J]. Journal of Agricultural Biotechnology, 31(8): 1747-1756.) [5] 黄海祥, 钱前. 2017. 水稻粒形遗传与长粒型优质粳稻育种进展[J]. 中国水稻科学, 31(6): 665-672. (Huang H X, Qian Q.2017. Progress in genetic research of rice grain shape and breeding achievements of long-grain shape and good quality japonica rice[J]. Chinese Journal of Rice Science, 31(6): 665-672.) [6] 黄娟, 刘开强, 邓国富, 等. 2020. 水稻香味基因荧光分子标记开发及育种应用[J]. 植物生理学报, 56(5): 1015-1022. (Huang J, Liu K Q, Deng G F, et al.2020. Development and breeding application of fluorescent molecular marker for rice fragrance gene[J].Plant Physiology Journal, 56(5): 1015-1022.) [7] 康艺维, 陈玉宇, 张迎信. 2020. 水稻粒型基因克隆研究进展及育种应用展望[J]. 中国水稻科学, 34(6): 479-490. (Kang Y W, Chen Y Y, Zhang Y X.2020. Research progress and breeding prospects of grain size associated genes in rice[J]. Chinese Journal of Rice Science, 34(6): 479-490.) [8] 李欣, 莫惠栋, 王安民, 等. 1999. 粳型杂种稻米品质性状的遗传表达[J]. 中国水稻科学, 13(4): 197-204. (Li X, Mo H D, Wang A M, et al.1999. Genetic expression for quality traits of rice grain in japonica hybrids[J]. Chinese Journal of Rice Science, 13(4): 197-204.) [9] 李扬, 徐小艳, 严明, 等. 2016. 利用GS3基因功能性分子标记改良水稻粒型的研究[J]. 上海农业学报, 32(1): 1-5. (Li Y, Xu X Y, Yan M, et al.2016. Improvement of rice grain shape by functional molecular marker of GS3 gene[J]. Acta Agriculturae Shanghai, 32(1): 1-5.) [10] 李珍珠, 彭清祥, 邱先进, 等. 2023. 水稻分蘖角度基因TIG1功能性分子标记的开发和应用[J]. 植物遗传资源学报, 24(3): 808-816. (Li Z Z, Peng Q X, Qiu X J, et al.2023. Development and application of functional molecular marker of rice tiller angle gene TIG1[J]. Journal of Plant Genetic Resources, 24(3): 808-816.) [11] 刘喜, 牟昌铃, 周春雷, 等. 2018. 水稻粒型基因克隆和调控机制研究进展[J]. 中国水稻科学, 32(1): 1-11. (Liu X, Mou C L, Zhou C L, et al.2018. Research progress on cloning and regulation mechanism of rice grain shape genes[J]. Chinese Journal of Rice Science, 32(1): 1-11.) [12] 罗玉坤, 朱智伟, 陈能, 等. 2004. 中国主要稻米的粒型及其品质特性[J]. 中国水稻科学, 18(2): 135-139. (Luo Y K, Zhu Z W, Chen N, et al.2004. Grain types and related quality characteristics of rice in china[J]. Chinese Journal of Rice Science, 18(2): 135-139.) [13] 卿冬进, 刘开强, 杨燕宇, 等. 2018. 基于PARMS技术的抗稻瘟病基因Pigm分子标记的开发[J]. 西南农业学报, 31(8): 1617-1621. (Qing D J, Liu K Q, Yang Y Y, et al.2018. Development of molecular marker of rice blast resistance gene Pigm on basis of PARMS technology[J].Southwest China Journal of Agricultural Sciences, 31(8): 1617-1621.) [14] 卿冬进, 邓国富, 戴高兴, 等. 2020. 水稻抗稻瘟病基因Pi1荧光分子标记的开发及验证[J]. 分子植物育种, 18(15): 4989-4996. (Qing D J, Deng G F, Dai G X, et al.2020. Development and validation of the fluorescence molecular marker of rice blast resistance gene Pi1[J]. Molecular Plant Breeding, 18(15): 4989-4996.) [15] 卿冬进, 刘开强, 邓国富, 等. 2019. 基于PARMS技术的水稻粒形基因GW8分子标记的开发[J]. 西南农业学报, 32(3): 463-469. (Qing D J, Liu K Q, Deng G F, et al.2019, Developing molecular marker of rice grain shape gene GW8 on based on PARMS technology, Southwest China Journal of Agricultural Science, 32(3): 463-469.) [16] 伍豪, 高利军, 黄娟, 等. 2019. 水稻粒长粒重主效基因GS3的功能标记开发与利用[J]. 西南农业学报, 32(6): 1211-1215. (Wu H, Gao L J, Huang J, et al.2019. Development and application of functional molecular marker of grain length and grain weight major gene GS3 in rice[J]. Southwest China Journal of Agricultural Sciences, 32(6): 1211-1215.) [17] 伍豪, 邓国富, 高利军, 等. 2021. 水稻抗白叶枯病基因Xa7荧光分子标记开发与育种应用[J]. 分子植物育种, 19(12): 4024-4031. (Wu H, Deng G F, Gao L J, et al.2021. Development and breeding application of the fluorescence molecular marker of rice bacterial blight resistance gene Xa7[J]. Molecular Plant Breeding, 19(12): 4024-4031.) [18] 杨义强, 朱林峰, 李晓芳, 等. 2021. 抗稻瘟病基因Pi2的基因特异性KASP标记开发与应用[J]. 植物遗传资源学报, 22(5): 1314-1321. (Yang Y Q, Zhu L F, Li X F, et al.2021. Development and application of KASP marker specific for rice blast resistance Pi2 gene[J]. Journal of Plant Genetic Resources, 22(5): 1314-1321.) [19] 裔传灯, 王德荣, 蒋伟, 等. 2016. 水稻粒宽基因GS5的功能标记开发和单倍型鉴定[J]. 中国水稻科学, 30(5): 487-492. (Yi C D, Wang D R, Jiang W, et al.2016. Development of functional markers and identification of haplotypes for rice grain width gene GS5[J]. Chinese Journal of Rice Science, 30(5): 487-492.) [20] 周雷, 蔡海亚, 戴凤美, 等. 2016. 水稻稻瘟病抗性基因Pi25功能性SNP分子标记开发及应用[J]. 分子植物育种, 14(10): 2680-2685. (Zhou L, Cai H Y, Dai F M, et al.2016. Development and application of a functional SNP marker of the blast resistant gene Pi25 in rice[J]. Molecular Plant Breeding, 14(10): 2680-2685.) [21] 朱映东, 时亚琼, 周锋利, 等. 2013. 分子标记辅助选育香型巨胚水稻[J]. 上海师范大学学报(自然科学版), 42(6): 623-628. (Zhu Y D, Shi Y Q, Zhou F L, et al.2013. Development of aromatic giant-embryo rice by molecular marker-assisted selection[J]. Journal of Shanghai Normal University (Natural Sciences), 42(6): 623-628.) [22] Fan C, Xing Y, Mao H, et al.2006. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein[J]. Theoretical & Applied Genetics, 112(6): 1164-1171. [23] Hu Z, He H, Zhang S, et al.2012. A kelch motif-containing serine/threonine protein phosphatase determines the large grain QTL trait in rice[J]. Journal of Integrative Plant Biology, 54(12): 979-990. [24] Ishimaru K, Hirotsu N, Madoka Y, et al.2013. Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield[J]. Nature Genetics, 45(6): 707-711. [25] Li Y, Fan C, Xing Y, et al.2011. Natural variation in GS5 plays an important role in regulating grain size and yield in rice[J]. Nature Genetics, 43(12): 1266-1269. [26] Li Y Y, Tao H J, Zhao X Q, et al.2014. Molecular improvement of grain weight and yield in rice by using GW6 gene[J]. Rice Science, 21(3): 127-132. [27] Liu J, Chen J, Zheng X, et al.2017. GW5 acts in the brassinosteroid signalling pathway to regulate grain width and weight in rice[J]. Nature Plants, (3): 1-7. [28] Murray M G, Thompson W F.1980. Rapid isolation of high molecular weight plant DNA[J]. Nucleic Acids Research, 8(19): 4321. [29] Shomur A A, Izawa T, Ebank K, et al.2008. Deletion in a gene associated with grain size increased yields during rice domestication[J]. Nature Genetics, 40(8): 1023-1028. [30] Song X J, Huang W, Shi M, et al.2007. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase[J]. Nature Genetics, 39(5): 623-630. [31] Sun L, Li X, Fu Y, et al.2013. GS6, a member of the GRAS gene family, negatively regulates grain size in rice[J]. Journal of Integrative Plant Biology, 55(10): 938-949. [32] Wang S, Li S, Liu Q, et al.2015. The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality[J]. Nature Genetics, 47(8): 949-954. [33] Wang S K, Wu K, Yuan Q B, et al.2012. Control of grain size,shape and quality by OsSPL16 in rice[J]. Nature Genetics, 44(8): 950-954. [34] Wang Y X, Xiong G S, Hu J, et al.2015. Copy number variation at the GL7 locus contributes to grain size diversity in rice[J]. Nature Genetics, 47(8): 944-948. |
|
|
|