|
|
Establishment and Application of SYBR GreenⅠReal-time Fluorescent Quantitative PCR Method for Penicillium sclerotiorum |
SONG Jia-Yi1, ZHANG Hai-Xia2, QI Shi1, ZHANG Ji-Li3, CHEN Dong-Hao1, WEI Jian-Yu3, LI Ping1, CHEN Ze-Peng4, YAN Jian1,* |
1 College of Resources and Environment, South China Agricultural University, Guangzhou 510642, China; 2 Guangdong Tobacco Shaoguan City Co., Ltd, Shaoguan 512026, China; 3 China Tobacco Guangxi Industrial Co., Ltd, Nanning 530001, China; 4 China Tobacco Corporation Guangdong Province Company, Guangzhou 510642, China |
|
|
Abstract Penicillium sclerotiorum is an endophytic fungus in the genus Penicillium with high biological activity that produces secondary metabolites with certain biological control potentials and has been widely used in medicine, agriculture, and other fields. This study utilized P. sclerotiorum obtained from Portulaca oleracea, and developed primers for its specific conserved sequence. The target segment was inserted into the pBM73-T vector by molecular cloning to create a recombinant plasmid as a positive control. A real-time PCR method for P. sclerotiorum was developed using the SYBR GreenⅠdye. PCR amplification revealed that only P. sclerotiorum exhibited bands, and there were no melting curves or amplification curves for P. chrysogenum and P. polonicum. The findings demonstrated a good linear relationship between the cycling threshold (Ct) and the template concentration between 2.35×103 and 2.35×1010 copies/μL in the standard curve created using recombinant plasmid as the standard. The obtained standard curve was y=-3.211x+39.42 with a correlation coefficient R2=0.999 3. The findings from the soil detection showed that the method's ability to accurately count endophytic P. sclerotiorum. The method established in this study had good specificity, reproducibility and practicability, which could be used to investigate the colonization of P. sclerotiorum in plants and soil and quantify the number in different tissues of plants. This study provides some data and theoretical support for the study of the promotion and resistance mechanism of P. sclerotiorum.
|
Received: 30 June 2023
|
|
|
|
|
[1] 董丹, 张涛涛, 刘霆. 2022. 菌核青霉D35的鉴定及对黄瓜根结线虫病的防效评价[J]. 黑龙江农业科学, (06): 57-61.(Dong D, Zhang T T, Liu T. 2022. Identification of Penicillium aff. sclerotiorum D35 and its biological control effect against cucumber root knot nematode[J]. Heilongjiang Agricultural Science, (06): 57-61) [2] 刘佳佳, 陈峰, 覃健萍, 等. 2017. 禽偏肺病毒Taqman荧光定量PCR方法的建立及应用[J]. 中国兽医杂志, 53(06): 34-36. (Liu J J, Chen F, Qin J, et al.2017. Establishment and application of Taqman fluorescence quantitative PCR method for avian metapneumovirus[J]. Chinese Journal of Veterinary Medicine, 53(06): 34-36.) [3] 刘霆, 龚成琳, 张奇, 等. 2017. 一种三酮化合物及其应用. 中国, 北京市, CN109535177B[P]. (Liu T, Gong C L, Zhang Q, et al.2017. A triketone compound and its application. Beijing, China, CN109535177B[P].) [4] 祁超, 寸海春, 何鹏飞, 等. 2019. 生防菌YN201490在黄瓜植株体内的定殖能力及防病机制的初步研究[J]. 云南大学学报(自然科学版), 41(01): 172-180. (Qi C, Cun H C, He P F, et al.2019. Colonization ability in cucumber plant and biocontrol mechanism of Bacillus subtilis YN201490[J]. Journal of Yunnan University: Natural Sciences Edition, 41(01): 172-180. [5] 苏丹, 任安芝, 高玉葆. 2006. 黑麦草内生真菌感染状况的检测及定量分析[J]. 微生物学通报, (05):12-16.(Su D, Ren A Z, Gao Y B. 2006. Detection and quantification of the endophyte in Lolium perenne L[J]. Microbiology Bulletin, (05): 12-16.) [6] 隋丽, 万婷玉, 路杨, 等. 2021. 内生真菌对植物促生、抗逆作用研究进展[J]. 中国生物防治学报, 37(06): 1325-1331. (Sui L, Wan T Y, Lu Y, et al.2021. Review of fungal endophytes on plant growth promotion and stress resistance[J]. Chinese Journal of Biological Control, 37(06): 1325-1331.) [7] 王彩霞, 杜方原, 刘丹丹, 等. 2020. 猪不同器官组织猪圆环病毒3型载量的实时荧光定量PCR检测[J]. 动物医学进展, 41(11): 15-18. (Wang C X, Du F Y, Liu D D, et al.2020. Detection of PCV3 loads in different organs of pigs using real-time PCR[J]. Progress in Veterinary Medicine, 41(11): 15-18.) [8] 王虹, 施美芳, 杨浩, 等. 2022. 基于TaqMan探针多重实时荧光PCR的肠道特殊菌群绝对定量方法的建立[J]. 微生物与感染, 17(03): 129-138. (Wang H, Shi M F, Yang H, et al.2022. Establishment of an absolute quantitative method for special intestinal bacterial flora by TaqMan probe multiplex real-time fluorescent PCR[J]. Journal of Microbes and Infections, 17(03): 129-138.) [9] 吴秀伟. 2018. 产单宁酶菌核青霉发酵条件优化及酶学性质研究[D]. 硕士学位论文, 安徽农业大学, 导师: 汪小钢, pp. 18-19. (Wu X W.2018. Study on fermentation optimization of Penicillium Sclerotiorum and enzymatic properties of tannase[D]. Thesis for M.S., Anhui Agricultural university, Supervisor: Wang X G, pp: 18-19.) [10] 张玲, 张庆波, 陈玉婵, 等. 2013. 18株南海海洋真菌的初步鉴定及其发酵产物的细胞毒活性和抗菌活性筛选[J]. 热带海洋学报, 32(03): 47-51. (Zhang L, Zhang Q B, Chen Y C, et al.2013. Preliminary identification of 18 marine fungal strains from the South China Sea and screening of their fermentation products for cytotoxic and antibacterial activities[J]. Journal of Tropical Oceanography, 32(03): 47-51.) [11] 张倩. 2019. 马齿苋内生菌抗青枯病的研究[D]. 硕士学位论文, 华南农业大学, 导师: 颜健, pp. 34-41. (Zhang Q.2019. The isolated of endophytes and antibacterial substance and mechanism of them in Portulaca oleracea L.[D]. Thesis for M. S., South China Agricultural University, Supervisor: Yan J, pp. 34-41.) [12] 周启武, 于龙凤, 路浩, 等. 2014. 小花棘豆和变异黄芪内生真菌显微分布及定量检测[J]. 微生物学报, 54(05): 572-581. (Zhou Q W, Yu L F, Lu H, et al.2014. Microscopic distribution and quantitative detection of endophytic fungus Undifilum oxytropis from Oxytropis glabra DC and Astragalus variabilis[J]. Acta Microbiologica Sinica, 54(05): 572-581.) [13] Amer H M, Almajhdi F N.2011. Development of a SYBR GreenⅠbased real-time RT-PCR assay for detection and quantification of bovine coronavirus[J]. Molecular and Cellular Probes, 25(2): 101-107. [14] Chernin L, Chet I.2002. Microbial enzymes in biocontrol of plant pathogens and pests[C]//, Richard G B, Richard P D(ed.), Enzymes in the Environment. Cham, CRC Press, Boca Raton, pp. 171-225. [15] El-Metwally M M, Mekawey A A I, El-Halmouch Y, et al.2023. Symbiotic relationships with fungi: From mutualism to parasitism[C]//, Rashad Y M, Baka Z A M, MoussaT A A(ed.), Plant Mycobiome: Diversity, Interactions and Uses. Cham, Springer, Switzerland, pp. 375-413. [16] Hebra T, Eparvier V, Touboul D.2023. Nitrogen enriched solid-state cultivation for the overproduction of azaphilone red pigments by Penicillium sclerotiorum SNB-CN111[J]. Journal of Fungi, 9(2): 156. [17] Houbraken J,Frisvad J, Seifert K,et al.2012. New penicillin-producing Penicillium species and an overview of section Chrysogena[J]. Persoonia-Molecular Phylogeny and Evolution of Fungi, 29(23): 78-100. [18] Oliveira L A, Macedo M M, Rodrigues J, et al.2022. Plant metabolite 5-pentadecyl resorcinol is produced by the Amazonian fungus Penicillium sclerotiorum LM 5679[J]. Brazilian Journal of Biology, 82: e241863. [19] Takahashi J A, Monteiro de Castro M C, Souza G G, et al.2008. Isolation and screening of fungal species isolated from Brazilian cerrado soil for antibacterial activity against Escherichia coli, Staphylococcus aureus, Salmonella typhimurium, Streptococcus pyogenes and Listeria monocytogenes[J]. Journal de Mycologie Medicale, 18(4): 198-204. [20] Tang J, Zhou Z, Yang T, et al.2019. Azaphilone alkaloids with anti-inflammatory activity from fungus Penicillium sclerotiorum cib-411[J]. Journal of Agricultural and Food Chemistry, 67(8): 2175-2182. [21] Zhu X J, Hu Y F, Chen X, et al.2014. Endophytic fungi from Camellia sinensis show an antimicrobial activity against the rice blast pathogen Magnaporthe grisea[J]. Phyton, 83: 57. [22] Yaderets V V, Karpova N V, Glagoleva E V, et al.2021. Inhibition of the growth and development of Sclerotinia sclerotiorum (Lib.) de Bary by combining azoxystrobin, Penicillium chrysogenum VKM F-4876d, and Bacillus strains[J]. Agronomy, 11(12): 2520. [23] Zelenkova N F, Vinokurova N G, Arinbasarov M U.2003. Analysis of secondary metabolites of microscopic fungi of the genus Penicillium by chromatographic techniques[J]. Applied Biochemistry and Microbiology, 39: 44-54. [24] Zhao M, Chen X, Pan W, et al.2022. Meroterpenoids from the fungus Penicillium sclerotiorum GZU-XW03-2 and their anti-inflammatory activity[J]. Phytochemistry, 202: 113307. [25] Zhao M, Ruan Q, Pan W, et al.2020. New polyketides and diterpenoid derivatives from the fungus Penicillium sclerotiorum GZU-XW03-2 and their anti-inflammatory activity[J]. Fitoterapia, 143: 104561. |
|
|
|