|
|
Cloning and Functional Analysis of CtWRI1 Gene from Safflower (Carthamus tinctorius) |
LI Jia-Qi1, REN Ying-Ying2, LIU Sha1, LIU Hong-Ye1, TIAN Yin-Shuai1,* |
1 School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan 056038, China; 2 College of Life Sciences, Sichuan University, Chengdu 610065, China |
|
|
Abstract Safflower (Carthamus tinctorius) is an economic crop with the medicinal and oil values, and analyzing the molecular mechanism of safflower seed oil biosynthesis will be benefiting for the genetic breeding of safflower. WRINKLED1 (WRI1) gene plays an important regulatory role in plant lipid biosynthesis. In order to analyze the molecular mechanism of oil accumulation in safflower seeds, the CDS sequence (GenBank No. OP785157) of safflower CtWRI1 gene was cloned from 'Yuhonghua No. 3' combined with the early transcriptomic data and homologous sequence method, and its bioinformatics and expression patterns were analyzed. The function of CtWRI1 gene was identified through tobacco (Nicotiana tabacum) genetic transformation method. The results showed that the total CDS length of CtWRI1 was 1 128 bp, encoding 375 amino acids. The CtWRI1 protein was predicted containing 2 conserved AP2/ERF domains. CtWRI1 protein sequence was closely related to sunflower (Helianthus annuus) and lettuce (Lactuca sativa) by the evolutionary tree analysis. The expression level of CtWRI1 was high during seed development and reached the highest level in 10-days embryo. The analysis results of CtWRI1 transgenic tobacco showed that CtWRI1 could induce the expression of genes involved in fatty acid biosynthesis, and the oil content of transgenic tobacco seeds was significantly increased. This study lays the foundation for further study of the molecular mechanism of oil biosynthesis in safflower seeds.
|
Received: 01 March 2023
|
|
Corresponding Authors:
*tianyinshuai@hebeu.edu.cn
|
|
|
|
[1] 陈跃华, 顾元国, 侯献飞, 等. 2020. 32份油药兼用红花种质资源表型性状遗传多样性分析[J]. 新疆农业科学, 57(10): 1775-1784. (Chen Y H, Gu Y G, Hou X F, et al.2020. Genetic diversity of phenotypic characters 32 germplasm resources of oil and medicine safflower[J]. Xinjiang Agricultural Sciences, 57(10): 1775-1784.) [2] 胡学礼, 胡尊红, 杨谨, 等. 2018. 云南红花的研究进展[J]. 农学学报, 8(5): 25-30. (Hu X L, Hu Z H, Yang J, et al.2018. Safflowers in Yunnan research progress[J]. Journal of Agriculture, 8(5): 25-30.) [3] 金龙飞, 周丽霞, 曹红星, 等. 2022. WRI1调控植物油脂合成的研究进展[J]. 中国油料作物学报, 44(4): 687-698. (Jin L F, Zhou L X, Cao H X, et al.2022. Progress on WRI1 regulation of plant oil biosynthesis[J]. Chinese Journal of Oil Crop Sciences, 44(4): 687-698. [4] 林寒, 李刚, 刘虹, 等. 2018. 中国红花种质资源的种类与分布[J]. 生物资源, 40(4): 314-320. (Lin H, Li G, Liu H, et al.2018. Varieties and distribution of Carthamus tinctorius L. germplasm resources in China[J]. Biotic Resources, 40(4): 314-320.) [5] 刘成, 冯中朝, 肖唐华, 等. 2019. 我国油菜产业发展现状、潜力及对策[J]. 中国油料作物学报, 41(4): 485-489. (Liu C, Feng Z C, Xiao T H, et al.2019. Development, potential and adaptation of Chinese rapeseed industry[J]. Chinese Journal of Oil Crop Sciences, 41(4): 485-489.) [6] 刘仁建, 吴卫, 郑有良, 等. 2006. 48份红花材料种子含油率及其籽油脂肪酸分析[J]. 西南农业学报, 19(5): 920-927. (Liu R J, Wu W, Zheng Y L, et al.2006. Analysis of the oil and fatty acids percentage of the seeds of 48 safflower accessions[J]. Southwest China Journal of Agricultural Science, 19(5): 920-927.) [7] 吕培霖, 李成义, 王俊丽. 2016. 红花籽油的研究进展[J]. 中国现代中药, 3: 387-389. (Lv P L, Li C Y, Wang J L.2016. Review of safflower seed oil[J]. Modern Chinese Medicine, 3: 387-389.) [8] 王月, 雷培, 季喜梅, 等. 2018. 蓖麻RcWRI1基因表达分析及生物信息学分析[J]. 分子植物育种, 16(5): 1461-1467. (Wang Y, Lei P, Ji X M, et al.2018. Expression analysis and bioinformatics analysis of RcWRI1 gene in castor[J]. Molecular Plant Breeding, 16(5): 1461-1467.) [9] 谢佳彤, 孙丽丹, 陈晓曼, 等. 2022. 麻风树JcWRI1基因克隆及功能分析[J]. 江苏农业学报, 38(2): 334-342. (Xie J T, Sun L D, Chen X M, et al.2022. Cloning and functional analysis of JcWRI1 gene from physic nut[J]. Jiangsu Journal of Agricultural Sciences, 38(2): 334-342.) [10] 许兰杰, 梁慧珍, 余永亮, 等. 2020. 我国红花品种特征特性、适应性及栽培技术研究进展[J]. 中药材, 43(8): 2040-2044. (Xu L J, Liang H Z, Yu Y L, et al.2020. Research progress on characteristics, adaptability and cultivation technique of Chinese safflower varieties[J]. Journal of Chinese Medicinal Material, 43(8): 2040-2044.) [11] 徐硕, 邹智, 肖艳华, 等. 2022. 油莎豆块茎油脂积累相关基因CeWRI1的克隆与功能分析[J]. 热带作物学报, 43(5): 923-929. (Xu S, Zou Z, Xiao Y H, et al.2022. Cloning and functional characterization of CeWRI1, a gene involved in oil accumulation from tigernut (Cyperus esculentus L.) tubers[J]. Chinese Journal of Tropical Crops, 43(5): 923-929. [12] Bourgis F, Kilaru A, Cao X, et al.2011. Comparative transcriptome and metabolite analysis of oil palm and date palm mesocarp that differ dramatically in carbon partitioning[J]. Proceedings of the National Academy of Sciences of the USA, 108(30): 12527-12532. [13] Cernac A, Benning C.2010. WRINKLED1 encodes an AP2/EREB domain protein involved in the control of storage compound biosynthesis in Arabidopsis[J]. The Plant Journal, 40(4): 575-585. [14] Focks N, Benning C.1998. Wrinkled1: A novel, low-seed-oil mutant of Arabidopsis with a deficiency in the seed-specific regulation of carbohydrate metabolism[J]. Plant Physiology, 118(1): 91-101. [15] Guo W, Chen L M, Chen H F, et al.2020. Overexpression of GmWRI1b in soybean stably improves plant architecture and associated yield parameters, and increases total seed oil production under field conditions[J]. Plant Biotechnology Journal, 18(8): 1639-1641. [16] Horsch R.1985. A simple and general method for transferring genes into plants[J]. Science, 227(4691): 1229-1231. [17] Ji H, Liu D, Yang Z, et al.2021. High oil accumulation in tuber of yellow nutsedge compared to purple nutsedge is associated with more abundant expression of genes involved in fatty acid synthesis and triacylglycerol storage[J]. Biotechnol for Biofuels, 14(1):54. [18] Kn A, Aa B, Mn C, et al.2021. Safflower seed oil improves steroidogenesis and spermatogenesis in rats with type Ⅱ diabetes mellitus by modulating the genes expression involved in steroidogenesis, inflammation and oxidative stress[J]. Journal of Ethnopharmacology, 275: 114139. [19] Kong Q, Ma W, Yang H, et al.2017. The Arabidopsis WRINKLED1 transcription factor affects auxin homeostasis in roots[J]. Journal of Experimental Botany, 68(16): 4627-4634. [20] Kong Q, Yuan L, Ma W.2019. WRINKLED1, a 'master regulator' in transcriptional control of plant oil biosynthesis[J]. Plants (Basel), 8(7): 238. [21] Li Y H, Beisson F, Pollard M, et al.2006. Oil content of Arabidopsis seeds: The influence of seed anatomy, light and plant-to-plant variation[J]. Phytochemistry, 67(9): 904-915. [22] Liu J, Wei H, Zhan G, et al.2010. Increasing seed mass and oil content in transgenic Arabidopsis by the overexpression of wri1-like gene from Brassica napus[J]. Plant Physiology & Biochemistry, 48(1): 9-15. [23] Ma W, Kong Q, Arondel V, et al.2013. Wrinkled1, a ubiquitous regulator in oil accumulating tissues from Arabidopsis embryos to oil palm mesocarp[J]. PLOS ONE, 8(7): e68887. [24] Ma W, Kong Q, Grix M, et al.2015. Deletion of a C-terminal intrinsically disordered region of WRINKLED1 affects its stability and enhances oil accumulation in Arabidopsis[J]. The Plant Journal, 83(5): 864-874. [25] Maeo K, Tokuda T, Ayame A, et al.2009. An AP2-type transcription factor, WRINKLED1, of Arabidopsis thaliana binds to the AW-box sequence conserved among proximal upstream regions of genes involved in fatty acid synthesis[J]. The Plant journal, 60(3): 476-487. [26] Nogales-Delgado S, Encinar J M, González Cortés Á.2021. High oleic safflower oil as a feedstock for stable biodiesel and biolubricant production[J]. Industrial Crops and Products, 170: 113701. [27] Robbelen G, Downey R K, Ashri A.1989. Oil crops of the world[M]. New York: McGraw-Hill. [28] Shen B, Allen W B, Zheng P, et al.2010. Expression of ZmLEC1 and ZmWRI1 increases seed oil production in maize[J]. Plant Physiology, 153(3): 980-987. [29] Shivendra K, Heena A, Variath M T, et al.2016. Utilization of molecular, phenotypic, and geographical diversity to develop compact composite core collection in the oilseed crop, Safflower (Carthamus tinctorius L.) through maximization strategy[J]. Frontiers in Plant Science, 7: 1554. [30] Sun R, Ye R, Gao L, et al.2017. Characterization and ectopic expression of CoWRI1, an AP2/EREBP domain-containing transcription factor from coconut (Cocos nucifera L.) endosperm, changes the seeds oil content in transgenic Arabidopsis thaliana and rice (Oryza sativa L.)[J]. Frontiers in Plant Science, 8: 63. [31] Tamura K, Stecher G, Kumar S.2021. MEGA11: Molecular evolutionary genetics analysis version 11[J]. Molecular Biology and Evolution, 38(7): 3022-3027. |
|
|
|