|
|
Genetic Diversity Analysis of Dwarf Tomato Germplasm Resources Based on Agronomic Traits and InDel Markers |
KAN Yun-Xia1, SHI Hai-Lin1, ZHANG Dan-Dan1,YOU Xi1, YOU Yuan-Yuan1, SHU Jin-Shuai4, WANG Shuai1,2,3*, MAO Xiu-Jie1,2,3 |
1 College of Horticultural Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China; 2 Hebei Key Laboratory of Characteristic Horticultural Germplasm Mining and Innovative Utilization, Qinhuangdao 066004, China; 3 Hebei Higher Institute Application Technology Research and Development Center of Horticultural Plant Biological Breeding, Qinhuangdao 066004, China; 4 Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China |
|
|
Abstract Dwarf tomato (Solanum lycopersicum) has both ornamental and edible values, and its abundant germplasm resources are the basis for germplasm innovating and varieties breeding. In order to study the genetic diversity of germplasm resources and screen more diverse types of germplasm resource materials for parental selection and variety breeding, 25 traits of 45 dwarf tomato germplasm resources from domestic and foreign were investigated, and genetic diversity analysis as well as cluster analysis were carried out; 33 pairs of InDel primers were used to PCR amplification to analyze their genetic diversity. The results showed that the genetic diversity index of 25 traits ranged from 0.26 to 2.03, the diversity index of the 7 mass traits ranged from 0.26 to 1.31, with the average value of 0.92, and the coefficients of variation of the 18 quantitative traits were distributed from 8.51% to 32.51%, with the average value of 19.01%. The mean number of alleles effective for InDel marker detection was 1.64, and the polymorphic information content (PIC) ranged from 0.18 to 0.43, with the average value of 0.31. Both agronomic trait cluster analysis and InDel marker cluster analysis divided 45 materials into 3 categories, and the agronomic traits of most germplasm were consistent with the clustering results of InDel markers. The results showed that 45 dwarf tomato germplasm resources had rich genetic diversity, which could provide reference basis for new varieties breeding.
|
Received: 17 November 2022
|
Corresponding Authors:
*wangshuai101og@126.com
|
|
|
|
[1] 白羿雄, 郑雪晴, 姚有华, 等. 2019. 青稞种质资源表型性状的遗传多样性分析及综合评价[J]. 中国农业科学, 52(23): 4201-4214. (Bai Y X, Zheng X Q, Yao Y H, et al. 2019. Genetic diversity analysis and comprehensive evaluation of phenotypic traits in hulless barley germplasm resources[J]. Scientia Agricultura Sinica, 52(23):4201-4214. ) [2] 曹建康, 姜微波, 赵玉梅. 2007. 果蔬采后生理生化实验指导 [M]. 中国轻工业出版社, 北京. pp. 30-36. (Cao J K, Jiang W B, Zhao Y M. 2007. Experiment Guidance of Postharvest Physiology and Biochemistry of Fruits and Vegetables[M]. China Light Industry Press, Beijing. pp. 30-36. ) [3] 董建明, 尹渝来, 刘照坤, 等. 2021. 矮生樱桃番茄新品种“黄晶”及盆栽技术[J]. 蔬菜 , 368(08): 73-75. (Dong J M, Yin Y L, Liu Z K, et al. 2021. A new dwarf cherry tomato cultivar 'Huang jing' and its potted culture technology[J]. Vegetables, 368(08): 73-75. ) [4] 郭爽, 张素平, 丘漫宇, 等. 2014. 樱桃番茄种质资源亲缘关系的 InDel 和 SSR 标记分析[J]. 热带作物学报, 35(08):1464-1468. (Guo S, Zhang S P, Qiu M Y, et al. 2014. Phylogenetic relationship analysis of cherry tomato germplasm using InDel and SSR markers[J]. Chinese Journal of Tropical Crop, 35(08): 1464-1468. ) [5] 黄静, 王苓, 江卫, 等. 2017. 番茄 SSR 遗传多样性及其品质性状的关联分析[J]. 西南农业学报 , 30(08): 1867-1871. (Huang J, Wang L, Jiang W, et al. 2017. Genetic diversity of tomato revealed by SSR markers and its as‐sociation with quality traits[J]. Southwest China Journal of Agricultural Sciences, 30(08): 1867-1871. ) [6] 洪霞, 赵永彬, 屈为栋, 等. 2020. 基于表型性状与简单重复序列标记的浙江省芋种质资源遗传多样性比较[J]. 浙江农业学报, 32(9): 1544-1554. (Hong X, Zhao Y B, Qu W D, et al. 2020. Comparative analysis on genetic diversity of Colocasia esculenta germplasm in Zhejiang Province based on phenotype and simple sequence repeats markers[J]. Acta Agriculturae Zhejiangensis, 32(9): 1544-1554. ) [7] 金兰. 2019. 栽培番茄遗传多样性分析及杂种优势群的划分[D]. 硕士学位论文, 南京农业大学, 导师: 余文贵, pp. 70-71. (Jin L. 2019. The genetic diversity of cultivated tomatoes and grouping of heterosis groups[D]. Thesis for M. S. , Nanjing Agricultural University, Suppervisor: Yu W G, pp. 70-71. ) [8] 康研, 陈珍珠, 赵媛, 等. 2021. 豇豆品种资源的 InDel 分子标记分析[J]. 江汉大学学报(自然科学版), 49(05): 11-17. (Kang Y, Chen Z Z, Zhao Y, et al. 2021. Analysis of cowpea varieties using InDel molecular markers[J]. Journal of Jianghan University (Natural Science Edition), 49(05): 11-17. ) [9] 李景富. 2011. 中国番茄育种学 [M]. 中国农业出版社 , 北京. pp. 28-31. (Li J F. 2011. Chinese Tomato Breeding [M]. China Agricultural Press, Beijing. pp. 28-31. ) [10] 李慕紫, 华仁锐, 李香旺, 等. 2019. 矮生盆栽番茄品种比较试验[J]. 现代农业科技 , 750(16): 88-89, 94. (Li M Z, Hua R R, Li X W, et al. 2019. Variety comparison test of dwarf potted tomato[J]. Modern Agricultural Science and Technology, 750(16): 88-89, 94. ) [11] 李锡香. 2006. 番茄种质资源描述规范和数据标准[M]. 中国农业出版社, 北京. pp. 8-46. (Li X X. 2006. Description and Data Standard for Tomato (Lycopersicon esculentum Mill. )[M]. China Agricultural Press, Beijing. pp. 8-46. ) [12] 李艳红, 聂俊, 郑锦荣, 等. 2021. 华南地区樱桃番茄表型性状遗传多样性分析及综合评价[J]. 园艺学报, 48(09):1717-1730. (Li Y H, Nie J, Zheng J R, et al. 2021. Genetic diversity analysis and multivariate evaluation of cherry tomato by phenotypic traits in south China[J]. Acta Horticulturae Sinica, 48(09): 1717-1730. ) [13] 刘丹, 孙玉友, 魏才强, 等. 2017. InDel 分子标记及其在水稻研究中的应用[J]. 种子, 36(09): 47-52, 59. (Liu D, Sun Y Y, Wei C Q, et al. 2017. InDel molecular markers and its applications in rice,36(09): 47-52, 59. ) [14] 卢霞, 刘梦华, 邓志军, 等. 2021. 基于 InDel 标记的黄瓜种质资源遗传多样性分析[J]. 江苏农业科学 , 49(01): 49-54. (Lu X, Liu M H, Deng Z J, et al. 2021. Genetic diversity analysis of cucumber germplasm resources based on InDel markers[J]. Jiangsu Agricultural Science, 49(01): 49-54. ) [15] 潘磊, 宋丽娟, 高桐, 等. 2020. 菜豆种子遗传变异的 InDel 分子标记分析[J]. 江西农业大学学报, 42(02): 250-258. (Pan L, Song L J, Gao T, et al. 2020. Analysis of genetic variation of common bean seeds using InDel molecular markers[J]. Acta Agriculturae Universitatis Jiangxiensis,42(02): 250-258. ) [16] 秦丹丹, 董静, 许甫超, 等. 2016. 分子育种时代的作物种质资源创新与利用[J]. 大麦与谷类科学, 33(03): 1-4, 19. (Qin D D, Dong J, Xu F C, et al. 2016. Innovation and utilization of crop germplasm resources during the era of molecular breeding[J]. Barley and Cereal Sciences,33(03): 1-4, 19. ) [17] 何润铭, 黎振兴, 郭汉权, 等. 2021. 基于表型性状的番茄品种遗传多样性分析[J]. 湖北农业科学 , 60(18): 115-120. (He R M, Li Z X, Guo H Q, et al. 2021. Genetic diversity analysis of tomato varieties based on phenotypic traits[J]. Hubei Agricultural Science, 60(18): 115-120. ) [18] 申璐, 沈火林, 柴敏, 等. 2011. 采用 InDel 和 SSR 标记分析番茄品种基因组 DNA 多态性[J]. 中国农业大学学报, 16(02): 34-42. (Shen L, Shen H L, Chai M, et al. 2011. Genomic DNA polymorphisms in tomato varieties revealed by InDel and SSR markers[J]. Journal of China Agricul‐tural University, 16(02): 34-42. ) [19] 孙玥, 杨秀荣, 郭彦丽, 等. 2022. 水稻基因组任意区间 InDel 标记开发方法[J]. 江苏农业科学, 50(01): 34-39. (Sun Y, Yang X R, Guo Y L, et al. 2022. Development of InDel markers for arbitrary region of rice genome[J]. Jiangsu Agricultural Science, 50(01): 34-39. ) [20] 王飞燕, 李玉姗, 何伟, 等. 2022. 新疆鲜食番茄农艺性状的多元统计分析[J]. 北方园艺 , 46(15): 1-9. (Wang F Y, Li Y S, He W, et al. 2022. Multivariate statistical analysis on agronomic traits of fresh tomatoes in Xinjiang[J]. Northern Horticulture, 46(15): 1-9. ) [21] 王娟, 李荫藩, 梁秀芝, 等. 2017. 北方主栽燕麦品种种质资源形态多样性分析[J]. 作物杂志 , 179(4): 27-32. (Wang J, Li Y F, Liang X Z, et al. 2017. Morphological diversity of main oat germplasm resources in Northern China[J]. Crops, 179(4): 27-32. ) [22] 王小娟, 陈健晓, 李雪峤, 等. 2022. 13 份矮生番茄种质资源表型性状遗传多样性分析[J]. 分子植物育种, 20(06):1955-1964. (Wang X J, Chen J X, Li X Q, et al. 2022. Genetic diversity analysis of 13 dwarf tomato germplasm resources by phenotypic traits[J]. Molecular Plant Breeding, 20(06): 1955-1964. ) [23] 叶仕伦, 张宗勋, 黄静. 2014. 矮生番茄丰产栽培技术[J]. 吉林农业 , 343(3): 62-63. ( Ye S L, Zhang Z X, Huang J. 2014. Productive cultivation techniques for dwarf tomatoes[J]. Jilin Agriculture, 343(3): 62-63. ) [24] 赵文杰, 徐薇, 张景龙, 等. 2019. 甜高粱生物学性状与 SSR分子标记遗传多样性[J]. 浙江农业学报, 31(12): 1945-1954. (Zhao W J, Xu W, Zhang J L, et al. 2019. Genetic diversity of sweet sorghum as revealed by biological characters and SSR markers[J]. Acta Agriculturae Zhejiangensis, 31(12): 1945-1954. ) [25] 赵小琴, 贾瑞玲, 刘军秀, 等. 2022. 120 份谷子种质资源的农艺性状表现和遗传多样性分析[J]. 作物杂志, 211(06): 61-69. (Zhao X Q, Jia R L, Liu J X, et al. 2022. Agronomic traits and genetic diversity analysis of 120 foxtail millet germplasms[J]. Crops, 211(06): 61-69. ) [26] 张丽娟, 曲继松, 颜秀娟, 等. 2016. 根域容积限制对矮生观赏番茄生长发育的影响[J]. 北方园艺, 40(10): 24-27. (Zhang L J, Qu J S, Yan X J, et al. 2016. Effect of root volume on the growth and development of potted ornamental tomato[J]. Northern Horticulture, 40(10): 24-27. ) [27] 张钟炎, 胡鲁巍, 陈加威, 等. 2021. 矮生观赏番茄种质资源农艺性状鉴定及观赏性评价[J]. 浙江大学学报(农业与生命科学版), 47(2): 158-170. (Zhang Z Y, Hu L W, Chen J W, et al. 2021. Agronomic character identification and ornamental value evaluation of dwarf ornamental to‐mato germplasm resources[J]. Journal of Zhejiang Uni‐versity (Agriculture & Life Sciences), 47(2): 158-170. ) [28] Jin L, Zhao L P, Wang Y L, et al. 2019. Genetic diversity of 324 cultivated tomato germplasm resources using agronomic traits and InDel markers[J]. Euphytica, 215(4): 1-16. [29] Seo J H, Dhungana S K, Kang B K, et al. 2022. Development and validation of SNP and InDel markers for pod-shat‐tering tolerance in soybean[J]. International Journal of Molecular Sciences, 23(4): 2382-2382. [30] Theresa M F, Julapark C, Steven D T. 1995. Microprep protocol for extraction of DNA from tomato and other herba‐ceous plants[J]. Plant Molecular Biology Reporter, 13(3): 207-209. [31] Lu Y, Cui X, Li R, et al. 2015. Development of genome-wide insertion/deletion markers in rice based on graphic pipeline platform[J]. Journal of Integrative Plant Biology, 57(11): 980-991. [32] Yuan H R, Yang W L, Zou J N, et al. 2021. InDel markers based on 3K whole-genome re-sequencing data charac‐terise the subspecies of Rice (Oryza sativa L. )[J]. Agri‐culture, 11(7): 655. |
|
|
|