|
|
|
| Establishment and Application of TaqMan Probe qPCR Method for Detecting Sweet Potato Witches'-broom Phytoplasma Disease |
| LI Hua-Wei1,2, XU Yong-Qing1,2, LI Guo-Liang1,2, ZHANG Hong1,2, CUI Ji-Chao3, LIN Zhao-Miao1,2, QIU Yong-Xiang1,2, TANG Hao1, QIU Si-Xin1,* |
1 Fujian Academy of Agricultural Sciences, Fuzhou 350003, China; 2 Crop Institute Research Centre, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; 3 Putian Institute of Agricultural Sciences, Putian 351106, China |
|
|
|
|
Abstract Phytoplasma-induced sweet potato infection is a significant disease that impacts sweet potato (Ipomoea batatas) production in China, particularly in southeastern coastal regions. This study developed specific primers and TaqMan probes based on the secY sequence of the sweet potato witches'-broom phytoplasma transporter protein gene for sensitive and rapid detection of the sweet potato witches'-broom phytoplasma and its presence in propagation media. A qPCR detection method was established using TaqMan, and was applied to test collected sweet potato samples, insect vectors, and various sweet potato tissues infected with phytoplasma. The results demonstrated that this TaqMan qPCR detection method could detect sweet potato witches'-broom phytoplasma sensitively, rapidly, and accurately, with a detection limit of 1.71×10¹ copies/μL. It could also specifically distinguish between Melia azedarach witches'-broom phytoplasma (16SrⅠ-B), Areca catechu yellowing phytoplasma (16SrⅠ-B), Catharanthus roseus periwinkle little leaf phytoplasma (16SrⅠ-A), the causal agent of sweet potato bacterial wilt (Ralstonia solanacearum), and black rot pathogen of sweet potato (Dickeya dadantii). This method was used to quantitatively detect the pathogen content in different tissues of sweet potatoes infected with phytoplasma, revealing a pathogen content range of 3.98×10?~6.03×105 copies/μL, and identifying the sweet potato stems and the stem base as having the highest phytoplasma content. The insect vectors in the field were also quantitatively tested using this detection method, confirming Orosius orientalis as the transmission medium of sweet potato witches'-broom phytoplasma. In conclusion, the qPCR detection method developed in this study demonstrated good sensitivity, specificity, and repeatability. It not only enables rapid detection of sweet potato witches'-broom phytoplasma, but also provides a reference for grading the disease severity of sweet potato witches'-broom disease according to pathogen quantity.
|
|
Received: 15 May 2025
|
|
|
|
Corresponding Authors:
* 25273531@qq.com
|
|
|
|
[1] 陈集双, 李德葆. 1994. 葱兰黄化病病原类菌原体的研究[J]. 微生物学报,(3): 245-247+256. (Chen J S, Li D B.1994. A study on mycoplasma-like organisms causing yellow disease on autumn zephyrlily[J]. Acta Microbiologica Sinica,(3): 245-247+256.) [2] 陈永萱, 薛宝娣, 吴沅英. 1987. 甘薯、仙人掌、芝麻丛枝病病原物的电镜观察[J]. 南京农业大学学报, (1): 127-128. (Chen Y X, Xu B D, Wu Y Y. 1987. Electron microscopy observation of sweet potato, Cactus, and sesame clubroot disease pathogens[J]. Journal of Nanjing Agricultural University (1): 127-128) [3] 韩剑, 罗明, 徐金虹, 等. 2014. 枣疯病植原体TaqMan探针实时荧光定量PCR检测方法的建立[J]. 植物保护, 40(5): 111-116. (Han J, Luo M, Xu J H, et al.2014. Establishment of real-time fluorescent quantitative PCR method with TaqMan probe for detection of jujube witches' broom phytoplasma[J]. Plant Protection, 40(5): 111-116.) [4] 柯冲, 陈景耀, 陈孝宽, 等. 1985. 福建甘薯丛枝病的调查和电镜观察[J]. 福建农业科技, (1): 2-5. (Ke C, Chen J Y, Chen X K, et al. 1985. Investigation and electron microscopy observation of Fujian sweet potato degeneration disease[J]. Fujian Agricultural Science and technology, (1): 2-5.) [5] 李华伟, 许泳清, 张鸿, 等. 2025. 引起福建甘薯丛枝病的植原体分子鉴定及分析[J]. 植物病理学报, 55(05): 1048-1058. (Li H W, Xu Y Q, Zhang H, et al.2025. Molecular identification and analysis of sweet potato witches'-broom phytoplasma in Fujian Province[J]. Acta Phytopathologica Cinica, 55(05): 1048-1058.) [6] 李继东, 陈鹏, 倪静,等. 2019. 植原体致病分子机理研究进展[J]. 园艺学报, 46(9): 1691-1700. (Li J D, Chen P, Ni J, et al.2019. Review on the molecular pathogenic mechanism of phytoplasma[J]. Acta Horticulturae Sinica, 46(9): 1691-1700.) [7] 林兆威, 孟秀利, 唐庆华, 等. 2024. 槟榔黄化植原体TaqMan探针实时荧光定量PCR检测方法的建立[J]. 热带作物学报, 45(6): 1120-1126. (Lin Z W, Meng X L, Tang Q H, et al.2024. Establishment of TaqMan probe real-time fluorescent quantitative PCR detection method for areca palm yellow leaf phytoplasma[J]. Chinese Journal of Tropical Crops, 45(6): 1120-1126.) [8] 马居奎, 张成玲, 杨冬静, 等. 2020. 我国甘薯病毒病研究进展[J]. 河北农业科学, 24(1): 57-62. (Ma J K, Zhang C L, Yang D J, et al.2020. Research progress of sweet potato virus disease in China[J]. Journal of Hebei Agricultural Sciences, 24(1): 57-62.) [9] 王晓燕, 李文凤, 黄应昆, 等. 2016. 国外引进甘蔗材料白叶病植原体巢式PCR检测及其序列分析[J]. 植物保护, 42(2): 142-145. (Wang X Y, Li W F, Huang Y K, et al.2016. Nested PCR detection and sequence analysis of phytoplasma causing white leaf disease in imported sugarcane materials[J]. Plant Protection, 42(2): 142-145.) [10] 王晓燕, 张荣跃, 李庆红, 等. 2023. 中国植原体病害的状况、分布及多样性研究进展[J]. 农学学报, 13(3): 58-64. (Wang X Y, Zhang R Y, Li Q H, et al.2023. The status,distribution and diversity of phytoplasma diseases in china: A review[J]. Journal of Agriculture, 13(3): 58-64.) [11] 王欣, 李强, 曹清河, 等. 2021. 中国甘薯产业和种业发展现状与未来展望[J]. 中国农业科学, 54(3): 483-492. (Wang X, Li Q, Chao Q H, et al.2021. Current status and future prospective of sweetpotato production and seed industry in China[J]. Scientia Agricultura Sinica, 54(3): 483-492) [12] 王柱华, 王柱华, 刘俊男, 等. 2018. 云南蔓草虫豆丛枝植原体16S rDNA和secY基因序列分析[J]. 云南农业大学学报(自然科学), 33(5): 826-835. (Wang Z H, Liu J N, Yang Z X, et al.2018. Analysis of the sequences of 16S rDNA and secY of Cajanus scarabaeoides witches'-broom phytoplasma in Yuanmou, Yunnan Province[J]. Journal of Yunnan Agricultural University: Natural Science, 33(5): 826-835.) [13] 谢联辉, 林奇英, 刘万年. 1984. 福建甘薯丛枝病的病原体研究[J]. 福建农林大学学报(自然科学版), (1): 85-88. (Xie L H, Lin Q Y, Liu W N, 1984. Study on the pathogen of Fujian sweet potato corky disease[J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), (1): 85-88.) [14] 张磊, 韩翔, 李正男, 等. 2012. secY和nusA基因在泡桐丛枝植原体亚组分类中的应用[J]. 西北农林科技大学学报(自然科学版), 40(11): 91-96. (Zhang L, Han X, Li Z N, et al.2012. Application of secY gene and nusA gene to classification of paulownia witches' broom associated phytoplasma[J]. Journal of Northwest A&F University(Natural Science Edition), 40(11): 91-96.) [15] 张磊, 韩翔, 隋丹丹, 等. 2014. 枣疯植原体rp基因和secY基因序列分析[J]. 西北农林科技大学学报(自然科学版), 42(07): 102-106. (Zhang L, Han X, Sui D D, et al.2014. Sequence analyses of rp and secY genes of phytoplasma of jujube witches broom[J]. Journal of Northwest A&F University (Natural Science Edition), 42(07): 102-106.) [16] 张荣跃, 马永德, 李婕, 等. 2023. 甘蔗白叶病植原PCR检测方法的建立与应用[J]. 甘蔗糖业, 52(1): 21-25. (Zhang R Y, Ma Y D, Li J, et al.2023. The establishment and application of a PCR method for sugarcane white leaf phytoplasma detection[J]. Sugarcane and Canesugar, 52(1): 21-25.) [17] 赵德轩, 李双民, 高朋, 等. 2024. 板栗黄化皱缩病植原体空间分布情况研究[J]. 河北果树, (4): 17-18. (Zhao D X, Li S M, Gao P, et al. 2024. Study on the spatial distribution of phytoplasma in chestnut blight and wrinkling disease[J]. Hebei Fruits, (4): 17-18.) [18] 赵付枚, 王爽, 田雨婷, 等. 2021. 甘薯病毒病发生关键因素研究[J]. 中国农业科学, 54(15): 3232-3240. (Zhao F M, Wang S, Tian Y T, et al.2021. An investigation into key factors influencing the occurrence of virus disease in sweet potato[J]. Scientia Agricultura Sinica, 54(15): 3232-3240.) [19] 周仲驹, 林奇英, 陈宇航, 等. 1991. 甘蔗白叶病的发生及其病原体的电子显微镜观察[J]. 植物病理学报, (1): 59. (Zhou Z J, Lin Q Y, Chen Y H, et al. 1991. Occurrence of sugarcane white leaf disease and electron microscopy observation of its pathogen[J]. Acta Phytopathologica Sinica, (1): 59.) [20] 周斯琦, 杨小蓉, 王郅怡, 等. 2024. 水稻橙叶植原体在病株中积累及其经电光叶蝉传播的主要特征[J]. 南方农业学报, 55(7): 2108-2115. (Zhou S Q, Yang X R, Wang Z Y, et al.2004. Accumulation in infected rice and transmission characteristics via Recilia dorsalis of rice orange leaf phytoplasma[J]. Journal of Southern Agriculture, 55(7): 2108-2115.) [21] Bertaccini A, Duduk B.2010. Phytoplasma and phytoplasma diseases: A review of recent research[J]. Phytopathologia Mediterranea, 48(3): 355-378. [22] Bertaccini A, Duduk B, Paltrinieri S, et al.2014. Phytoplasmas and phytoplasma diseases: A severe threat to agriculture[J]. American Journal of Plant Sciences, 5(12): 1763-1788. [23] Hogenhout S A, Oshima K, Ammar E D, et al.2008. Phytoplasmas: Bacteria that manipulate plants and insects[J]. Molecular Plant Pathology, 9(4): 403-423. [24] Lee I M, Zhao, Y, Bottner K D, 2006. SecY gene sequence analysis for finer differentiation of diversestrains in the aster yellows phytoplasma group[J]. Molecular and Cellular Probes, 20(2): 87-91. [25] Lin J, Yang C, Liu J, et al.2020. Identification and characterization of the phytoplasma associated with lettuce chlorotic leaf rot disease together with its natural reservoirs and leafhopper vectors in China[J]. Crop Protection, 138(1): 138. [26] Padovan A C, Schneider K S, Firrao G.2000. Chromosome mapping of the sweet potato little leaf phytoplasma reveals genome heterogeneity within the phytoplasmas[J]. Microbiology, 146(4): 1465-2080. [27] Schneider B, Ahrens U, Kirkpatrick B C.1993. Classification of plant-pathogenic mycoplasma-like organisms using restriction-site analysis of PCR-amplified 16S rDNA[J]. Journal of General Microbiology, 139(3): 519-527. [28] Seemuller E, Schneider B, Maurer R, et al.1994. Phylogenetic classification of phytopathogenic mollicutes by sequence analysis of 16S ribosomal DNA[J]. International Joural of Systematic and evolutionary Microbiology, 44(3): 440-446. [29] Sugio A, Kingdom H N, Maclean A M, et al.2011. Phytoplasma protein effector SAP11 enhances insect vector reproduction by manipulating plant development and defense hormone biosynthesis[J]. Proceedings of the National Academy of Sciences of USA, 108(48): 1254-1263. [30] Wei W, Kakizawa S, Jung H Y, et al.2004. An antibody against the SecA membrane protein of one phytoplasma reacts with those of phylogenetically different phytoplasmas[J]. Phytopathology, 94: 683-686. |
|
|
|