|
|
|
| Effects of PGF2α on Iron Metabolism, Ferroptosis and Autophagy in Luteal Tissue During Different Stages of the Luteal Phase in Sheep (Ovis aries) |
| ZHEN Zhi-Han1, KANG Jia1, YIN Jiang-Yan1, LI Ao1, LI Yu1, YUE Si-Cong1, LIU Xiao-Na1, DUAN Chun-Hui1, WANG Yuan2, LIU Yue-Qin1,*, ZHANG Ying-Jie1,* |
1 College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China; 2 Hengshui Zhihao Animal Husbandry Technology Co., LTD./Hebei Mutton Industry Research Institute, Hengshui 053000, China |
|
|
|
|
Abstract Prostaglandin F2α (PGF2α) plays a critical role in luteolysis by mediating apoptosis of luteal cells through its receptor. However, PGF2α does not exhibit pro-apoptotic effects on early-stage corpus luteum (CL) cells. Ferroptosis, a recently discovered form of programmed cell death driven by lipid peroxidation and dependent on iron ions, remains unclear in its role during PGF2α-mediated apoptosis of luteal cells at different developmental stages. This study investigated the impacts of PGF2α on iron content, ferroptosis, and autophagy-related gene expression in ovine CL during early, mid, and late luteal phases. Forty-eight synchronized healthy ewes (Ovis aries) were randomly allocated into 6 groups (experimental vs. control for each phase). Experimental groups received 0.15 mg PGF2α on day 5 (early), 9 (mid), and 13 (late luteal phase), while controls received saline at corresponding time points. CL tissues were collected 3 h post-injection for analyses. Results revealed that PGF2α significantly increased iron content throughout the luteal phase (P<0.05). Phase-specific responses were observed: Early-phase PGF2α upregulated anti-ferroptosis genes (SLC7A11, NRF2, FTH1), pro-ferroptosis gene ACSL4, and ferroptosis-related proteins (Ferritin, GPX4, SLC7A11, LC3B, NCOA4), while downregulating GPX4 and HSPA8 (P<0.05). Mid-phase treatment enhanced SLC7A11, ACSL4, ATG5, TPD52, HSPA5, HSPA8, and corresponding proteins, but suppressed NRF2 (P<0.05). Late-phase administration upregulated P53, ACSL4, GPX4, ATG5, HSPA5, HSPA8 genes and GPX4/SLC7A11/LC3B proteins, while downregulating NRF2, FTH1, and Ferritin (P<0.05). Mechanistic analysis revealed temporal regulation patterns: Early-phase PGF2α enhanced antioxidant defenses via SLC7A11/NRF2/FTH1 axis and iron sequestration to resist ferroptosis; mid-phase activated ACSL4-mediated pro-oxidative environment and ATG5-dependent autophagy, accelerating lipid peroxidation; late-phase triggered P53 activation, NRF2 suppression, and ACSL4 amplification, culminating in iron overload and irreversible ferroptosis-driven luteolysis. These findings demonstrate that PGF2α orchestrates sequential regulation of ferroptosis and autophagy pathways to drive CL transition from early antioxidant protection to terminal regression. This study provides theoretical basis for interventions in luteal dysfunction.
|
|
Received: 20 February 2025
|
|
|
|
Corresponding Authors:
* Corresponding authors, zhangyingjie66@126.com; liuyueqin66@126.com
|
|
|
|
[1] 李宇, 段春辉, 宋志攀, 等. 2023. 湖羊黄体期注射PGF2α对黄体组织形态、PGF2α受体和程序性坏死相关基因表达的影响[J]. 畜牧兽医学报, 54(4): 1500-1510. (Li Y, Duan C H, Song Z P, et al.2023. Effects of PGF2α on luteal tissue morphology, expression of PGF2α receptors and necroptosis-associated genes during luteal phase in Hu sheep[J]. Acta Veterinaria et Zootechnica Sinica, 54(4), 1500-1510.) [2] 秦浩, 高兵兵, 孙移坤, 等. 2017. 干扰RNA沉默tpd52基因对胶质瘤细胞增殖及凋亡的影响[J]. 安徽医科大学学报, 52(4): 514-518. (Qin H, Gao B B, Sun Y K, et al.2017. Effects of RNA interference-mediated silencing of tpd52 gene on the proliferation and apoptosis of glioma cells[J]. Acta Universitatis Medicinae Anhui, 52(4): 514-518.) [3] 滕春波, 丁乃峥, 杨增明. 2002. 黄体退化的分子机制及早期黄体钝化的某些原因探讨[J]. 中国畜牧杂志(4): 55-57. (Teng C B, Ding N Z, Yang Z M. 2002. Molecular mechanisms of luteal regression and exploration of certain causes for early luteal refractoriness[J]. Chinese Journal of Animal Science, (4): 55-57.) [4] 王川. 2007. 不同激素处理绵羊同期发情效果研究[D]. 硕士学位论文, 甘肃农业大学, 导师: 罗玉柱, pp. 36-37. (Wang C.2007. A study on the effect of different hormone treatments on estrus synchronization in sheep[D]. Thises for M.S., Gansu Agricultural University, Supervisor: Luo Y Z, pp. 36-37.) [5] 王雪松, 寿松涛, 姚咏明. 2020. 自噬相关基因ATG5在感染和炎症性疾病中的作用[J]. 生理科学进展, 51(5): 337-341. (Wang X S, Shou S T, Yao Y M.2020. The role of autophagy-related gene ATG5 in infectious and inflammatory diseases[J]. Progress in Physiological Sciences, 51(5): 337-341.) [6] 苑小龙, 魏征, 张俊萍, 等. 2023. 黄芩苷通过p53介导的SLC7A11下调诱导胃癌细胞铁死亡[J]. 中国实验方剂学杂志, 29(6): 71-78. (Yuan X L, Wei Z, Zhang J P, et al.2023. Baicalin induces ferroptosis in gastric cancer cells by downregulating SLC7A11 mediated by p53[J]. Chinese Journal of Experimental Traditional Medical Formulae, 29(6): 71-78.) [7] 张依迪, 任亚轩, 周军, 等. 2020. ACSL4基因的功能及其研究进展[J]. 中国牛业科学, 46(5): 52-58. (Zhang Y D, Ren Y X, Zhou J, et al.2020. Functions of the ACSL4 gene and its research progress[J]. Chinese Journal of Cattle Science, 46(5): 52-58.) [8] 张梓璇, 张颖. 2024. 牛病毒性腹泻病毒诱导铁死亡对其复制水平的影响[J]. 畜牧兽医学报, 55(12): 5716-5724. (Zhang Z X, Zhang Y.2024. Effect of ferroptosis induced by Bovine viral diarrhea virus on its replication level[J]. Acta Veterinaria et Zootechnica Sinica, 55(12): 5716-5724.) [9] 周文博, 孔晨飞, 秦高伟, 等. 2018. 铁死亡发生机制的研究进展[J]. 生物化学与生物物理进展, 45(1): 16-22. (Zhou W B, Kong C F, Qin G W, et al.2018. Research progress on the mechanism of ferroptosis occurrence[J]. Progress in Biochemistry and Biophysics, 45(1): 16-22.) [10] 周晓花, 梁莹, 贺曙光, 等. 2024. NRF2通过抑制ROS诱导的自噬减轻卵巢颗粒细胞损伤[J]. 中华预防医学杂志, 58(2): 261-267. (Zhou X H, Liang Y, He S G, et al.2024. NRF2 alleviates ovarian granulosa cell injury by inhibiting autophagy induced by ROS[J]. Chinese Journal of Preventive Medicine, 58(2): 261-267.) [11] Berisha B, Schams D, Rodler D, et al.2018. Changes in the expression of prostaglandin family members in bovine corpus luteum during the estrous cycle and pregnancy[J]. Molecular Reproduction and Development, 85(7): 622-634. [12] Bi X, Wu X, Chen J, et al.2024. Characterization of ferroptosis-triggered pyroptotic signaling in heart failure[J]. Signal Transduction and Targeted Therapy, 9(1): 257-270. [13] Bowolaksono A, Fauzi M, Sundari A M, et al.2021. The effects of luteinizing hormone as a suppression factor for apoptosis in bovine luteal cells in vitro[J]. Reproduction in Domestic Animals Zuchthygiene, 56(5): 744-753. [14] Chen X, Li J, Kang R, et al.2021. Ferroptosis: Machinery and regulation[J]. Autophagy, 17(9): 2054-2081. [15] Chen Y, Peng C, Tan W, et al.2023. Tumor protein D52 (TPD52) affects cancer cell metabolism by negatively regulating AMPK[J]. Cancer Medicine, 12(1): 488-499. [16] Cui J, Zhou Q, Yu M, et al.2022. 4-tert-butylphenol triggers common carp hepatocytes ferroptosis via oxidative stress, iron overload, SLC7A11/GSH/GPX4 axis, and ATF4/HSPA5/GPX4 axis[J]. Ecotoxicology and Environmental Safety, 242: 113944. [17] Cui Y, Zhang Z, Zhou X, et al.2021. Microglia and macrophage exhibit attenuated inflammatory response and ferroptosis resistance after RSL3 stimulation via increasing Nrf2 expression[J]. Journal of Neuroinflammation, 18(1): 249-263. [18] Dan W, Fan Y, Wang Y, et al.2024. The tumor suppressor TPD52-governed endoplasmic reticulum stress is modulated by APCCdc20[J]. Advanced Science (weinheim, Baden-wurttemberg, Germany), 11(45): e2405441. [19] Deng Y, Zeng L, Liu H, et al.2024. Silibinin attenuates ferroptosis in acute kidney injury by targeting FTH1[J]. Redox Biology, 77: 103360. [20] Ding K, Liu C, Li L, et al.2023. Acyl-CoA synthase ACSL4: An essential target in ferroptosis and fatty acid metabolism[J]. Chinese Medical Journal, 136(21): 2521-2537. [21] Ding M, Lu Y, Wen Q, et al.2024. Ovarian PERK/NRF2/CX43/StAR/progesterone pathway activation mediates female reproductive dysfunction induced by cold exposure[J]. Scientific Reports, 14(1): 10248. [22] Doll S, Proneth B, Tyurina Y Y, et al., 2017. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition[J]. Nature Chemical Biology, 13(1): 91-98. [23] Du R, Cheng X, Ji J, et al.2023. Mechanism of ferroptosis in a rat model of premature ovarian insufficiency induced by cisplatin[J]. Scientific Reports, 13(1): 4463-4478. [24] Ferraz J M V, Pires A V, Biehl M V, et al.2016. Luteolysis in bos indicus cows on days 5 and 7 of estrous cycle with varying doses of PGF2α[J]. Theriogenology, 86(5): 1268-1274. [25] Friedmann Angeli J P, Schneider M, Proneth B, et al.2014. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice[J]. Nature Cell Biology, 16(12): 1180-1191. [26] Gao M, Monian P, Pan Q, et al.2016a. Ferroptosis is an autophagic cell death process[J]. Cell Research, 26(9): 1021-1032. [27] Gao M, Monian P, Pan Q, et al.2016b. Ferroptosis is an autophagic cell death process[J]. Cell Research, 26(9): 1021-1032. [28] He W, Dam T V, Thøgersen R, et al.2022. Fluctuations in metabolites and bone markers across the menstrual cycle in eumenorrheic women and oral contraceptive users[J]. Journal of Clinical Endocrinology and Metabolism, 107(6): 1577-1588. [29] Hojo T, Skarzynski D J, Okuda K, 2022. Apoptosis, autophagic cell death, and necroptosis: Different types of programmed cell death in bovine corpus luteum regression[J]. The Journal of Reproduction and Development, 68(6): 355-360. [30] Hou W, Xie Y, Song X, et al.2016. Autophagy promotes ferroptosis by degradation of ferritin[J]. Autophagy, 12(8): 1425-1428. [31] Huang Y, Lu C, Wang H, et al.2023. DNAJA2 deficiency activates cGAS-STING pathway via the induction of aberrant mitosis and chromosome instability[J]. Nature Communications, 14(1): 5246-5261. [32] Imai H, Matsuoka M, Kumagai T, et al.2017. Lipid peroxidation-dependent cell death regulated by GPx4 and ferroptosis[J]. Current Topics in Microbiology and Immunology, 403: 143-170. [33] Jiang X, Stockwell B R, Conrad M.2021. Ferroptosis: mechanisms, biology and role in disease[J]. Nature Reviews. Molecular Cell Biology, 22(4): 266-282. [34] Jin Y, Qiu J, Lu X, et al.2022. C-MYC inhibited ferroptosis and promoted immune evasion in ovarian cancer cells through NCOA4 mediated ferritin autophagy[J]. Cells, 11(24): 4127-4141. [35] Juste Y R, Cuervo A M.2019. Analysis of chaperone-mediated autophagy[J]. Methods in Molecular Biology (Clifton, N.J.), 1880: 703-727. [36] Kamili A, Roslan N, Frost S, et al.2015. TPD52 expression increases neutral lipid storage within cultured cells[J]. Journal of Cell Science, 128(17): 3223-3238. [37] Kang R, Tang D.2017. Autophagy and ferroptosis-what's the connection?[J]. Current Pathobiology Reports, 5(2): 153-159. [38] Komatsu K, Manabe N, Kiso M, et al.2003. Soluble fas (FasB) regulates luteal cell apoptosis during luteolysis in murine ovaries[J]. Molecular Reproduction and Development, 65(4): 345-352. [39] Koppula P, Zhuang L, Gan B.2021. Cystine transporter SLC7A11/xCT in cancer: Ferroptosis, nutrient dependency, and cancer therapy[J]. Protein & Cell, 12(8): 599-620. [40] Le Y, Liu Q, Yang Y, et al.2024. The emerging role of nuclear receptor coactivator 4 in health and disease: A novel bridge between iron metabolism and immunity[J]. Cell Death Discovery, 10(1): 1-13. [41] Lei G, Zhuang L, Gan B.2022. Targeting ferroptosis as a vulnerability in cancer[J]. Nature Reviews. Cancer, 22(7): 381-396. [42] Li H, Pei X, Yu H, et al.2024a. Autophagic and apoptotic proteins in goat corpus luteum and the effect of adiponectin/AdipoRon on luteal cell autophagy and apoptosis[J]. Theriogenology, 214: 245-256. [43] Li J, Cao F, Yin H L, et al.2020. Ferroptosis: Past, present and future[J]. Cell Death & Disease, 11(2): 88-100. [44] Li J Y, Liu S Q, Yao R Q, et al.2021. A novel insight into the fate of cardiomyocytes in ischemia-reperfusion injury: From iron metabolism to ferroptosis[J]. Frontiers in Cell and Developmental Biology, 9: 799499. [45] Li Z, Yardley J E, Zaharieva D P, et al.2024b. Changing glucose levels during the menstrual cycle as observed in adults in the type 1 diabetes exercise initiative study[J]. Canadian Journal of Diabetes, 48(7): 446-451. [46] Lin P L, Tang H H, Wu S Y, et al.2020a. Saponin formosanin C-induced ferritinophagy and ferroptosis in human hepatocellular carcinoma cells[J]. Antioxidants, 9(8): 682-700. [47] Lin W, Wang C, Liu G, et al.2020b. SLC7A11/xCT in cancer: Biological functions and therapeutic implications[J]. American Journal of Cancer Research, 10(10): 3106-3126. [48] Liu Y, Gu W.2022. p53 in ferroptosis regulation: The new weapon for the old guardian[J]. Cell Death and Differentiation, 29(5): 895-910. [49] Luo W, Diaz F J, Wiltbank M C.2011. Induction of mRNA for chemokines and chemokine receptors by prostaglandin F2α is dependent upon stage of the porcine corpus luteum and intraluteal progesterone[J]. Endocrinology, 152(7): 2797-2805. [50] Ma J, Chen S, Liu J, et al.2024. Cryptochrome 1 regulates ovarian granulosa cell senescence through NCOA4-mediated ferritinophagy[J]. Free Radical Biology & Medicine, 217: 1-14. [51] Mancias J D, Wang X, Gygi S P, et al.2014. Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy[J]. Nature, 509(7498): 105-109. [52] Maus M, López-Polo V, Mateo L, et al.2023. Iron accumulation drives fibrosis, senescence and the senescence-associated secretory phenotype[J]. Nature Metabolism, 5(12): 2111-2130. [53] Miao C, Zhang Y, Yu M,et al.2023. HSPA8 regulates anti-bacterial autophagy through liquid-liquid phase separation[J]. Autophagy, 19(10): 2702-2718. [54] Niswender G D, Juengel J L, Silva P J, et al.2000. Mechanisms controlling the function and life span of the corpus luteum[J]. Physiological Reviews, 80(1): 1-29. [55] Ohshima T, Yamamoto H, Sakamaki Y, et al.2022. NCOA4 drives ferritin phase separation to facilitate macroferritinophagy and microferritinophagy[J]. Journal of Cell Biology, 221(10): e202203102. [56] Quan H, Guo Y, Li S, et al.2024. Phospholipid phosphatase 3 (PLPP3) induces oxidative stress to accelerate ovarian aging in pigs[J]. Cells, 13(17): 1421-1440. [57] Sabapathy K, Lane D P.2019. Understanding p53 functions through p53 antibodies[J]. Journal of Molecular Cell Biology, 11(4): 317-329. [58] Santana-Codina N, Gikandi A, Mancias J D.2021. The role of NCOA4-mediated ferritinophagy in ferroptosis[J]. Advances in Experimental Medicine and Biology, 1301: 41-57. [59] Santana-Codina N, Mancias J D.2018. The role of NCOA4-mediated ferritinophagy in health and disease[J]. Pharmaceuticals (basel, Switzerland), 11(4): 114-129. [60] Schams D, Berisha B.2004. Regulation of corpus luteum function in cattle-an overview[J]. Reproduction in Domestic Animals Zuchthygiene, 39(4): 241-251. [61] Stockwell B R.2022. Ferroptosis turns 10: Emerging mechanisms, physiological functions, and therapeutic applications[J]. Cell, 185(14): 2401-2421. [62] Sykiotis G P, Habeos I G, Samuelson A V, et al.2011. The role of the antioxidant and longevity-promoting Nrf2 pathway in metabolic regulation[J]. Current Opinion in Clinical Nutrition and Metabolic Care, 14(1): 41-48. [63] Tian Y, Lu J, Hao X, et al.2020. FTH1 inhibits ferroptosis through ferritinophagy in the 6-OHDA model of parkinson's disease[J]. Neurotherapeutics: The Journal of the American Society for Experimental NeuroTherapeutics, 17(4): 1796-1812. [64] Trott E A, Plouffe L, Hansen K, et al.1997. The role of p53 tumor suppressor gene and bcl-2 protooncogene in rat corpus luteum death[J]. American Journal of Obstetrics and Gynecology, 177(2): 327-331. [65] Wang J L, Xiu M, Wang J, et al.2024. METTL16-SENP3-LTF axis confers ferroptosis resistance and facilitates tumorigenesis in hepatocellular carcinoma[J]. Journal of Hematology and Oncology, 17(1): 78-98. [66] Wang Y, Zhao M, Zhao L, et al.2023. HBx-induced HSPA8 stimulates HBV replication and suppresses ferroptosis to support liver cancer progression[J]. Cancer Research, 83(7): 1048-1061. [67] Wen X, Liu L, Li S, et al.2020. Prostaglandin F2α induces goat corpus luteum regression via endoplasmic reticulum stress and autophagy[J]. Frontiers in Physiology, 11: 868-879. [68] Xiu Z, Zhu Y, Han J, et al.2022. Caryophyllene oxide induces ferritinophagy by regulating the NCOA4/FTH1/LC3 pathway in hepatocellular carcinoma[J]. Frontiers in Pharmacology, 13: 930958. [69] Yang Y, Ma Y, Li Q, et al.2022. STAT6 inhibits ferroptosis and alleviates acute lung injury via regulating P53/SLC7A11 pathway[J]. Cell Death & Disease, 13(6): 530-542. [70] Zhang S, Liu Q, Chang M, et al.2023. Chemotherapy impairs ovarian function through excessive ROS-induced ferroptosis[J]. Cell Death and Disease, 14(5): 340-354. [71] Zhang S, Osumi H, Uchizawa A, et al.2020. Changes in sleeping energy metabolism and thermoregulation during menstrual cycle[J]. Physiological Reports, 8(2): e14353. [72] Zhang S, Peng X, Yang S, et al.2022. The regulation, function, and role of lipophagy, a form of selective autophagy, in metabolic disorders[J]. Cell Death and Disease, 13(2): 132-142. [73] Zhao L, Miao H, Quan M, et al.2024. β-lapachone induces ferroptosis of colorectal cancer cells via NCOA4-mediated ferritinophagy by activating JNK pathway[J]. Chemico-Biological Interactions, 389: 110866. [74] Zhou X, Zhao R, Lv M, et al.2023. ACSL4 promotes microglia-mediated neuroinflammation by regulating lipid metabolism and VGLL4 expression[J]. Brain, Behavior and Immunity, 109: 331-343. [75] Zhu S, Zhang Q, Sun X, et al.2017. HSPA5 regulates ferroptotic cell death in cancer cells[J]. Cancer Research, 77(8): 2064-2077. |
|
|
|